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13.1 Introduction

This chapter considers key management techniques for controlling the distribution, use, and
update of cryptographic keys. Whereas Chapter 12 focuses on details of specific key estab-
lishment protocols which provide shared secret keys, here the focus is on communications
models for key establishment and use, classification and control of keys based on their in-
tended use, techniques for the distribution of public keys, architectures supporting auto-
mated key updates in distributed systems, and the roles of trusted third parties. Systems
providing cryptographic services require techniques for initialization and key distribution
as well as protocols to support on-line update of keying material, key backup/recovery, re-
vocation, and for managing certificates in certificate-based systems. This chapter examines
techniques related to these issues.

Chapter outline

The remainder of this chapter is organized as follows. §13.2 provides context including
background definitions, classification of cryptographic keys, simple models for key estab-
lishment, and a discussion of third party roles. §13.3 considers techniques for distributing
confidential keys, including key layering, key translation centers, and symmetric-key cer-
tificates. §13.4 summarizes techniques for distributing and authenticating public keys in-
cluding authentication trees, public-key certificates, the use of identity-based systems, and
implicitly-certified keys. §13.5 presents techniques for controlling the use of keying mate-
rial, including key notarization and control vectors. §13.6 considers methods for establish-
ing trust in systems involving multiple domains, certification authority trust models, and
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544 Ch. 13 Key Management Techniques

certification chains. The key management life cycle is summarized in §13.7, while §13.8
discusses selected specialized third party services, including trusted timestamping and no-
tary services supporting non-repudiation of digital signatures, and key escrow. Notes and
sources for further information are provided in §13.9.

13.2 Background and basic concepts

A keying relationship is the state wherein communicating entities share common data (key-
ing material) to facilitate cryptographic techniques. This data may include public or secret
keys, initialization values, and additional non-secret parameters.

13.1 Definition Key management is the set of techniques and procedures supporting the estab-
lishment and maintenance of keying relationships between authorized parties.

Key management encompasses techniques and procedures supporting:

1. initialization of system users within a domain;
2. generation, distribution, and installation of keying material;
3. controlling the use of keying material;
4. update, revocation, and destruction of keying material; and
5. storage, backup/recovery, and archival of keying material.

13.2.1 Classifying keys by algorithm type and intended use

The terminology of Table 13.1 is used in reference to keying material. A symmetric cryp-
tographic system is a system involving two transformations – one for the originator and
one for the recipient – both of which make use of either the same secret key (symmetric
key) or two keys easily computed from each other. An asymmetric cryptographic system
is a system involving two related transformations – one defined by a public key (the public
transformation), and another defined by a private key (the private transformation) – with the
property that it is computationally infeasible to determine the private transformation from
the public transformation.

Term Meaning

private key, public key paired keys in an asymmetric cryptographic system
symmetric key key in a symmetric (single-key) cryptographic system
secret adjective used to describe private or symmetric key

Table 13.1: Private, public, symmetric, and secret keys.

Table 13.2 indicates various types of algorithms commonly used to achieve the spec-
ified cryptographic objectives. Keys associated with these algorithms may be correspond-
ingly classified, for the purpose of controlling key usage (§13.5). The classification given
requires specification of both the type of algorithm (e.g., encryption vs. signature) and the
intended use (e.g., confidentiality vs. entity authentication).
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§13.2 Background and basic concepts 545

Algorithm type
↓ Cryptographic objective (usage) public-key symmetric-key

confidentiality† encryption encryption
data origin authentication‡ signature MAC
key agreement Diffie-Hellman various methods
entity authentication 1. signature 1. MAC
(by challenge-response protocols) 2. decryption 2. encryption

3. customized

Table 13.2: Types of algorithms commonly used to meet specified objectives.
†May include data integrity, and includes key transport; see also §13.3.1.
‡Includes data integrity; and in the public-key case, non-repudiation.

13.2.2 Key management objectives, threats, and policy

Key management plays a fundamental role in cryptography as the basis for securing cryp-
tographic techniques providing confidentiality, entity authentication, data origin authenti-
cation, data integrity, and digital signatures. The goal of a good cryptographic design is
to reduce more complex problems to the proper management and safe-keeping of a small
number of cryptographic keys, ultimately secured through trust in hardware or software
by physical isolation or procedural controls. Reliance on physical and procedural secu-
rity (e.g., secured rooms with isolated equipment), tamper-resistant hardware, and trust in a
large number of individuals is minimized by concentrating trust in a small number of easily
monitored, controlled, and trustworthy elements.

Keying relationships in a communications environment involve at least two parties (a
sender and a receiver) in real-time. In a storage environment, there may be only a single
party, which stores and retrieves data at distinct points in time.

The objective of key management is to maintain keying relationships and keying ma-
terial in a manner which counters relevant threats, such as:

1. compromise of confidentiality of secret keys.
2. compromise of authenticity of secret or public keys. Authenticity requirements in-

clude knowledge or verifiability of the true identity of the party a key is shared or
associated with.

3. unauthorized use of secret or public keys. Examples include using a key which is no
longer valid, or for other than an intended purpose (see Remark 13.32).

In practice, an additional objective is conformance to a relevant security policy.

Security policy and key management

Key management is usually provided within the context of a specific security policy. A se-
curity policy explicitly or implicitly defines the threats a system is intended to address. The
policy may affect the stringency of cryptographic requirements, depending on the suscepti-
bility of the environment in question to various types of attack. Security policies typically
also specify:

1. practices and procedures to be followed in carrying out technical and administrative
aspects of key management, both automated and manual;

2. the responsibilities and accountability of each party involved; and
3. the types of records (audit trail information) to be kept, to support subsequent reports

or reviews of security-related events.
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546 Ch. 13 Key Management Techniques

13.2.3 Simple key establishment models

The following key distribution problem motivates more efficient key establishment models.

The n2 key distribution problem

In a system with n users involving symmetric-key techniques, if each pair of users may
potentially need to communicate securely, then each pair must share a distinct secret key.
In this case, each party must have n − 1 secret keys; the overall number of keys in the
system, which may need to be centrally backed up, is then n(n − 1)/2, or approximately
n2. As the size of a system increases, this number becomes unacceptably large.

In systems based on symmetric-key techniques, the solution is to use centralized key
servers: a star-like or spoked-wheel network is set up, with a trusted third party at the cen-
ter or hub of communications (see Remark 13.3). This addresses the n2 key distribution
problem, at the cost of the requirement of an on-line trusted server, and additional commu-
nications with it. Public-key techniques offer an alternate solution.

Point-to-point and centralized key management

Point-to-point communications and centralized key management, using key distribution
centers or key translation centers, are examples of simple key distribution (communica-
tions) models relevant to symmetric-key systems. Here “simple” implies involving at most
one third party. These are illustrated in Figure 13.1 and described below, whereKXY de-
notes a symmetric key shared byX and Y .
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Figure 13.1: Simple key distribution models (symmetric-key).
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1. point-to-point mechanisms. These involve two parties communicating directly (see
§12.3.1).

2. key distribution centers (KDCs). KDCs are used to distribute keys between users
which share distinct keys with the KDC, but not with each other.
A basic KDC protocol proceeds as follows.1 Upon request fromA to share a key with
B, the KDC T generates or otherwise acquires a keyK, then sends it encrypted under
KAT to A, along with a copy ofK (for B) encrypted underKBT . Alternatively, T
may communicateK (secured underKBT ) to B directly.

3. key translation centers (KTCs). The assumptions and objectives of KTCs are as for
KDCs above, but here one of the parties (e.g.,A) supplies the session key rather than
the trusted center.
A basic KTC protocol proceeds as follows.2 A sends a keyK to the KTCT encrypted
under KAT . The KTC deciphers and re-enciphersK under KBT , then returns this
to A (to relay to B) or sends it to B directly.

KDCs provide centralized key generation, while KTCs allow distributed key genera-
tion. Both are centralized techniques in that they involve an on-line trusted server.

13.2 Note (initial keying requirements) Point-to-point mechanisms require thatA and B share
a secret key a priori. Centralized key management involving a trusted party T requires that
A and B each share a secret key with T . These shared long-term keys are initially estab-
lished by non-cryptographic, out-of-band techniques providing confidentiality and authen-
ticity (e.g., in person, or by trusted courier). By comparison, with public keys confidential-
ity is not required; initial distribution of these need only guarantee authenticity.

13.3 Remark (centralized key management – pros and cons) Centralized key management in-
volving third parties (KDCs or KTCs) offers the advantage of key-storage efficiency: each
party need maintain only one long-term secret key with the trusted third party (rather than
one for each potential communications partner). Potential disadvantages include: vulner-
ability to loss of overall system security if the central node is compromised (providing an
attractive target to adversaries); a performance bottleneck if the central node becomes over-
loaded; loss of service if the central node fails (a critical reliability point); and the require-
ment of an on-line trusted server.

13.2.4 Roles of third parties

Below, trusted third parties (TTPs) are first classified based on their real-time interactions
with other entities. Key management functions provided by third parties are then discussed.

(i) In-line, on-line, and off-line third parties

From a communications viewpoint, three categories of third parties T can be distinguished
based on relative location to and interaction with the communicating parties A and B (see
Figure 13.2):

1. in-line: T is an intermediary, serving as the real-time means of communication be-
tween A and B.

2. on-line: T is involved in real-time during each protocol instance (communicating
with A or B or both), but A and B communicate directly rather than through T .

1For specific examples of such protocols including Kerberos (Protocol 12.24), see §12.3.2.
2A specific example is the message-translation protocol, Protocol 13.12, withM = K .
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548 Ch. 13 Key Management Techniques

3. off-line: T is not involved in the protocol in real-time, but prepares information a
priori, which is available to A or B or both and used during protocol execution.

(a) in-line

B

(b) on-line

B

B

communications carried out prior to protocol run

(c) off-line

on-line

[optional]

[optional]

A

A

A

in-line
TTP

TTP

TTP
off-line

Figure 13.2: In-line, on-line, and off-line third parties.

In-line third parties are of particular interest when A and B belong to different secu-
rity domains or cannot otherwise interact directly due to non-interoperable security mecha-
nisms. Examples of an in-line third party include a KDC or KTC which provides the com-
munications path betweenA andB, as in Figure 13.1(b)(ii) or (c)(ii). Parts (b)(i) and (c)(i)
illustrate examples of on-line third parties which are not in-line. An example of an off-line
third party is a certification authority producing public-key certificates and placing them in
a public directory; here, the directory may be an on-line third party, but the certification
authority is not.

13.4 Remark (pros and cons: in-line, on-line, off-line) Protocols with off-line third parties usu-
ally involve fewer real-time message exchanges, and do not require real-time availability of
third parties. Revocation of privileges (e.g., if a secret key is compromised) is more easily
handled by in-line or on-line third parties.

(ii) Third party functions related to public-key certificates

Potential roles played by third parties within a key management system involving public-
key certificates (§13.4.2) are listed below. Their relationship is illustrated in Figure 13.3.

1. certification authority (CA) – responsible for establishing and vouching for the au-
thenticity of public keys. In certificate-based systems (§13.4.2), this includes binding
public keys to distinguished names through signed certificates, managing certificate
serial numbers, and certificate revocation.3

3Certificate creation requires verification of the authenticity of the entity to be associated with the public key.
This authentication may be delegated to a registration authority. The CA may carry out the combined functions
of a registration authority, name server, and key generation facility; such a combined facility is called either a CA
or a key management facility.
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§13.2 Background and basic concepts 549

2. name server – responsible for managing a name space of unique user names (e.g.,
unique relative to a CA).

3. registration authority – responsible for authorizing entities, distinguished by unique
names, as members of a security domain. User registration usually involves associ-
ating keying material with the entity.

4. key generator – creates public/private key pairs (and symmetric keys or passwords).
This may be part of the user entity, part of the CA, or an independent trusted system
component.

5. certificate directory – a certificate database or server accessible for read-access by
users. The CA may supply certificates to (and maintain) the database, or users may
manage their own database entries (under appropriate access control).

name

registration
authority

key
generator

User A certification
authority

certificate
directory

server

Figure 13.3: Third party services related to public-key certification.

(iii) Other basic third party functions

Additional basic functions a trusted third party may provide include:

1. key server (authentication server) – facilitates key establishment between other par-
ties, including for entity authentication. Examples include KDCs and KTCs (§13.2.3).

2. key management facility – provides a number of services including storage and arch-
ival of keys, audit collection and reporting tools, and (in conjunction with a certifi-
cation authority or CA) enforcement of life cycle requirements including updating
and revoking keys. The associated key server or certification authority may provide
a record (audit trail) of all events related to key generation and update, certificate gen-
eration and revocation, etc.

13.5 Note (key access server) A key server may be generalized to a key access server, providing
shared keys under controlled access to individual members of groups of two or more parties,
as follows. A keyK is securely deposited with the server by party A along with an access
control list specifying entities authorized to access it. The server stores the key and the
associated list. Subsequently, entities contact the server and request the key by referencing
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550 Ch. 13 Key Management Techniques

a key identifier supplied by A. Upon entity authentication, the server grants access to the
keying material (using KTC-like functionality) if the entity is authorized.

13.6 Note (digital enveloping of files) A key access server may be employed to store a keyK
used to symmetrically encrypt a file. The source party A may make the (encrypted) file
available by attaching it to the encrypted key, posting it to a public site, or communicating
it independently over a distinct (unsecured) channel. Retrieval of the key from the server
by an authorized party then allows that party access to the (decrypted) file. The same end
goal can be attained by public-key techniques directly, without key access servers, as fol-
lows: A encrypts the file underK as above; asymmetrically encryptsK using the intended
recipient’s public encryption key (or recipients’ keys); and includes the encrypted key(s) in
a header field preceding the encrypted file.

13.7 Remark (levels of trust vs. competency) Various third party services require different types
of trust and competency in the third party. For example, a third party possessing secret de-
cryption keys (or entity authentication keys) must be trusted not to disclose encrypted in-
formation (or impersonate users). A third party required (only) to bind an encryption public
key to an identity must still be trusted not to create false associations and thereafter imper-
sonate an entity. In general, three levels of trust in a third party T responsible for certify-
ing credentials for users may be distinguished. Level 1: T knows each user’s secret key.
Level 2: T does not know users’ secret keys, but can create false credentials without de-
tection. Level 3: T does not know users’ secret keys, and generation of false credentials is
detectable.

(iv) Advanced third party functions

Advanced service roles which may be provided by trusted third parties, discussed further
in §13.8, include:

1. timestamp agent – used to assert the existence of a specified document at a certain
point in time, or affix a trusted date to a transaction or digital message.

2. notary agent – used to verify digital signatures at a given point in time to support
non-repudiation, or more generally establish the truth of any statement (which it is
trusted on or granted jurisdiction over) at a given point in time.

3. key escrow agent – used to provide third-party access to users’ secret keys under spe-
cial circumstances. Here distinction is usually made between key types; for example,
encryption private keys may need to be escrowed but not signature private keys (cf.
Remark 13.32).

13.2.5 Tradeoffs among key establishment protocols

A vast number of key establishment protocols are available (Chapter 12). To choose from
among these for a particular application, many factors aside from cryptographic security
may be relevant. §12.2.2 discusses different types of assurances provided, and characteris-
tics useful in comparing protocols.

In selected key management applications, hybrid protocols involving both symmet-
ric and asymmetric techniques offer the best alternative (e.g., Protocol 12.44; see also
Note 13.6). More generally, the optimal use of available techniques generally involves
combining symmetric techniques for bulk encryption and data integrity with public-key
techniques for signatures and key management.
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§13.3 Techniques for distributing confidential keys 551

Public-key vs. symmetric-key techniques (in key management)

Primary advantages offered by public-key (vs. symmetric-key) techniques for applications
related to key management include:

1. simplified key management. To encrypt data for another party, only the encryption
public key of that party need be obtained. This simplifies key management as only
authenticity of public keys is required, not their secrecy. Table 13.3 illustrates the
case for encryption keys. The situation is analogous for other types of public-key
pairs, e.g., signature key pairs.

2. on-line trusted server not required. Public-key techniques allow a trusted on-line
server to be replaced by a trusted off-line server plus any means for delivering au-
thentic public keys (e.g., public-key certificates and a public database provided by
an untrusted on-line server). For applications where an on-line trusted server is not
mandatory, this may make the system more amenable to scaling, to support very large
numbers of users.

3. enhanced functionality. Public-key cryptographyoffers functionality which typically
cannot be provided cost-effectively by symmetric techniques (without additional on-
line trusted third parties or customized secure hardware). The most notable such fea-
tures are non-repudiation of digital signatures, and true (single-source) data origin
authentication.

Symmetric keys Asymmetric keys
secrecy authenticity secrecy authenticity

encryption key yes yes no yes
decryption key yes yes yes yes

Table 13.3: Key protection requirements: symmetric-key vs. public-key systems.

Figure 13.4 compares key management for symmetric-key and public-key encryption.
The pairwise secure channel in Figure 13.4(a) is often a trusted server with which each party
communicates. The pairwise authentic channel in Figure 13.4(b) may be replaced by a pub-
lic directory through which public keys are available via certificates; the public key in this
case is typically used to encrypt a symmetric data key (cf. Note 13.6).

13.3 Techniques for distributing confidential keys

Various techniques and protocols are available to distribute cryptographic keys whose con-
fidentiality must be preserved (both private keys and symmetric keys). These include the
use of key layering (§13.3.1) and symmetric-key certificates (§13.3.2).

13.3.1 Key layering and cryptoperiods

Table 13.2 (page 545) may be used to classify keys based on usage. The class “confiden-
tiality” may be sub-classified on the nature of the information being protected: user data vs.
keying material. This suggests a natural key layering as follows:

1. master keys – keys at the highest level in the hierarchy, in that they themselves are
not cryptographically protected. They are distributed manually or initially installed
and protected by procedural controls and physical or electronic isolation.
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552 Ch. 13 Key Management Techniques

symmetric
key generator
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secure channel (privacy and authentication)
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secure channel (authentication only)

encryption decryption

encryption decryption

Figure 13.4: Key management: symmetric-key vs. public-key encryption.

2. key-encrypting keys – symmetric keys or encryption public keys used for key trans-
port or storage of other keys, e.g., in the key transport protocols of Chapter 12. These
may also be called key-transport keys, and may themselves be secured under other
keys.

3. data keys – used to provide cryptographic operations on user data (e.g., encryption,
authentication). These are generally short-term symmetric keys; however, asymmet-
ric signature private keys may also be considered data keys, and these are usually
longer-term keys.

The keys at one layer are used to protect items at a lower level. This constraint is intended to
make attacks more difficult, and to limit exposure resulting from compromise of a specific
key, as discussed below.

13.8 Note (protection of key-encrypting keys) Compromise of a key-encrypting key (and more-
over, a master key as a special case thereof) affects all keys protected thereunder. Conse-
quently, special measures are used to protect master keys, including severely limiting access
and use, hardware protection, and providing access to the key only under shared control
(§12.7.1).

13.9 Example (key layering with master and terminal keys) Assume each terminal X from a
predefined set shares a key-encrypting key (terminal key) KX with a trusted central node
C, and that C stores an encrypted list of all terminal keys under a master keyKM . C may
then provide a session key to terminalsX and Y as follows. C obtains a random value R
(possibly from an external source) and defines the session key to be S = DKM (R), the
decryption ofR underKM . UsingKM , C decrypts the key list to obtainKX , computes S
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§13.3 Techniques for distributing confidential keys 553

from R, then encrypts S underKX and transmits it to X . S is analogously transmitted to
Y , and can be recovered by bothX and Y . �

Cryptoperiods, long-term keys, and short-term keys

13.10 Definition The cryptoperiod of a key is the time period over which it is valid for use by
legitimate parties.

Cryptoperiods may serve to:

1. limit the information (related to a specific key) available for cryptanalysis;
2. limit exposure in the case of compromise of a single key;
3. limit the use of a particular technology to its estimated effective lifetime; and
4. limit the time available for computationally intensive cryptanalytic attacks (in appli-

cations where long-term key protection is not required).

In addition to the key layering hierarchy above, keys may be classified based on tem-
poral considerations as follows.

1. long-term keys. These include master keys, often key-encrypting keys, and keys used
to facilitate key agreement.

2. short-term keys. These include keys established by key transport or key agreement,
and often used as data keys or session keys for a single communications session. See
Remark 13.11.

In general, communications applications involve short-term keys, while data storage
applications require longer-term keys. Long-term keys typically protect short-term keys.
Diffie-Hellman keys are an exception in some cases (see §12.6.1). Cryptoperiods limit the
use of keys to fixed periods, after which they must be replaced.

13.11 Remark (short-term use vs. protection) The term short as used in short-term keys refers to
the intended time of the key usage by legitimate parties, rather than the protection lifetime
(cf. §13.7.1). For example, an encryption key used for only a single session might nonethe-
less be required to provide protection sufficient to withstand long-term attack (perhaps 20
years), whereas if signatures are verified immediately and never checked again, a signature
key may need to provide protection only for a relatively short period of time. The more
severe the consequences of a secret key being disclosed, the greater the reward to an adver-
sary for obtaining access to it, and the greater the time or level of effort an adversary will
invest to do so. (See also §12.2.2, and §12.2.3 on perfect forward secrecy.)

13.3.2 Key translation centers and symmetric-key certificates

Further to centralized key management discussed in §13.2.3, this section considers tech-
niques involving key translation centers, including use of symmetric-key certificates.

(i) Key translation centers

A key translation center (KTC) T is a trusted server which allows two parties A and B,
which do not directly share keying material, to establish secure communications through
use of long-term keysKAT andKBT they respectively share with T . A may send a confi-
dential messageM toB using Protocol 13.12. IfM is a keyK, this provides a key transfer
protocol (cf. §13.2.3); thus, KTCs provide translation of keys or messages.
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554 Ch. 13 Key Management Techniques

13.12 Protocol Message translation protocol using a KTC

SUMMARY: A interacts with a trusted server (KTC) T and party B.
RESULT: A transfers a secret messageM (or session key) to B. See Note 13.13.

1. Notation. E is a symmetric encryption algorithm. M may be a session keyK.
2. One-time setup. A and T share keyKAT . Similarly B and T shareKBT .
3. Protocol messages.

A→ T : A, EKAT (B,M) (1)
A← T : EKBT (M,A) (2)
A→ B : EKBT (M,A) (3)

4. Protocol actions.

(a) A encryptsM (along with the identifier of the intended recipient) underKAT ,
and sends this to T with its own identifier (to allow T to look upKAT ).

(b) Upon decrypting the message, T determines it is intended for B, looks up the
key (KBT ) of the indicated recipient, and re-encryptsM for B.

(c) T returns the translated message for A to send to (or post in a public site for)
B; alternatively, T may send the response to B directly.

Only one ofA andB need communicate with T . As an alternative to the protocol as given,
A may send the first message to B directly, whichB would then relay to T for translation,
with T responding directly to B.

13.13 Note (security of Protocol 13.12)

(i) The identifier A, corresponding to the key under which message (1) was encrypted,
is included in message (2) as a secure indication (to B) of the original source. Key
notarization (§13.5.2) offers a more robust method of preventing key substitution.

(ii) A recognizable distinction (e.g., re-ordering the message and identifier fields) be-
tween the format of messages (1) and (2) is required to prevent an adversary from
reflecting (1) back to A as a message (3) purportedly originating from B.

(iii) Message replay is possible; attacks may be detected through the use of timestamps
or sequence numbers withinM . The protocol as given provides no entity authenti-
cation.

(iv) An integrity check mechanism on the encrypted text should be used to allow T to
detect tampering of the cleartext identifier A in (1), as well as in (2) and (3).

(v) A chosen-text attack on key KBT in (2) may be prevented by an encryption mode
such as CBC, and inserting an initial field containing a random number.

(ii) Symmetric-key certificates

Symmetric-key certificates provide a means for a KTC to avoid the requirement of either
maintaining a secure database of user secrets (or duplicating such a database for multiple
servers), or retrieving such keys from a database upon translation requests.

As before, associated with each partyB is a keyKBT shared with T , which is now em-
bedded in a symmetric-key certificate EKT (KBT , B) encrypted under a symmetric master
keyKT known only to T . (A lifetime parameter L could also be included in the certificate
as a validity period.) The certificate serves as a memo from T to itself (who alone can open
it), and is given to B so that B may subsequently present it back to T precisely when re-
quired to access B’s symmetric key KBT for message translation. Rather than storing all
user keys, T now need securely store onlyKT .
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Symmetric-key certificates may be used in Protocol 13.12 by changing only the first
message as below, where SCertA = EKT (KAT , A), SCertB = EKT (KBT , B):

A→ T : SCertA, EKAT (B,M), SCertB (1)

A public database may be established with an entry specifying the name of each user and its
corresponding symmetric-key certificate. To construct message (1),A retrievesB’s symm-
etric-key certificate and includes this along with its own. T carries out the translation as
before, retrievingKAT andKBT from these certificates, but now also verifies that A’s in-
tended recipientB as specified in EKAT (B,M) matches the identifier in the supplied cer-
tificate SCertB .

13.14 Remark (public-key functionality via symmetric techniques) The trusted third party func-
tionality required when using symmetric-key certificates may be provided by per-user
tamper-resistant hardware units keyed with a common (user-inaccessible) master key
KT . The trusted hardware unit HA of each user A generates a symmetric-key certificate
SCertA = EKT (KAT , A), which is made available to B when required. HB decrypts
the certificate to recoverKAT (inaccessible to B) and the identity A (accessible to B). By
design,HB is constrained to use other users’ keysKAT = KA solely for verification func-
tions (e.g., MAC verification, message decryption). KA then functions as A’s public key
(cf. Example 13.36), allowing data origin authentication with non-repudiation; an adju-
dicator may resolve disputes given a hardware unit containing KT , a disputed (message,
signature) pair, and the authentic value SCertA fromHA.

13.15 Remark (symmetric-key vs. public-key certificates) Symmetric-key certificates differ
from public-key certificates as follows: they are symmetric-key encrypted under T ’s mas-
ter key (vs. signed using T ’s private key); the symmetric key within may be extracted only
by T (vs. many parties being able to verify a public-key certificate); and T is required to be
on-line for key translation (vs. an off-line certification authority). In both cases, certificates
may be stored in a public directory.

13.4 Techniques for distributing public keys

Protocols involving public-key cryptography are typically described assuming a priori pos-
session of (authentic) public keys of appropriate parties. This allows full generality among
various options for acquiring such keys. Alternatives for distributing explicit public keys
with guaranteed or verifiable authenticity, including public exponentials for Diffie-Hellman
key agreement (or more generally, public parameters), include the following.

1. Point-to-point delivery over a trusted channel. Authentic public keys of other users
are obtained directly from the associated user by personal exchange, or over a di-
rect channel, originating at that user, and which (procedurally) guarantees integrity
and authenticity (e.g., a trusted courier or registered mail). This method is suitable if
used infrequently (e.g., one-time user registration), or in small closed systems. A re-
lated method is to exchange public keys and associated information over an untrusted
electronic channel, and provide authentication of this information by communicating
a hash thereof (using a collision-resistant hash function) via an independent, lower-
bandwidth authentic channel, such as a registered mail.
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Drawbacks of this method include: inconvenience (elapsed time); the requirement of
non-automated key acquisition prior to secured communications with each new party
(chronological timing); and the cost of the trusted channel.

2. Direct access to a trusted public file (public-key registry). A public database, the in-
tegrity of which is trusted, may be set up to contain the name and authentic public
key of each system user. This may be implemented as a public-key registry operated
by a trusted party. Users acquire keys directly from this registry.
While remote access to the registry over unsecured channels is acceptable against
passive adversaries, a secure channel is required for remote access in the presence of
active adversaries. One method of authenticating a public file is by tree authentication
of public keys (§13.4.1).

3. Use of an on-line trusted server. An on-line trusted server provides access to the
equivalent of a public file storing authentic public keys, returning requested (individ-
ual) public keys in signed transmissions; confidentiality is not required. The request-
ing party possesses a copy of the server’s signature verification public key, allowing
verification of the authenticity of such transmissions.
Disadvantages of this approach include: the trusted server must be on-line; the trusted
server may become a bottleneck; and communications links must be established with
both the intended communicant and the trusted server.

4. Use of an off-line server and certificates. In a one-time process, each partyA contacts
an off-line trusted party referred to as a certification authority (CA), to register its
public key and obtain the CA’s signature verification public key (allowing verification
of other users’ certificates). The CA certifies A’s public key by binding it to a string
identifyingA, thereby creating a certificate (§13.4.2). Parties obtain authentic public
keys by exchanging certificates or extracting them from a public directory.

5. Use of systems implicitly guaranteeing authenticity of public parameters. In such
systems, including identity-based systems (§13.4.3) and those using implicitly cer-
tified keys (§13.4.4), by algorithmic design, modification of public parameters re-
sults in detectable, non-compromising failure of cryptographic techniques (see Re-
mark 13.26).

The following subsections discuss the above techniques in greater detail. Figure 13.7
(page 564) provides a comparison of the certificate-based approach, identity-based systems,
and the use of implicitly-certified public keys.

13.4.1 Authentication trees

Authentication trees provide a method for making public data available with verifiable au-
thenticity, by using a tree structure in conjunction with a suitable hash function, and authen-
ticating the root value. Applications include:

1. authentication of public keys (as an alternative to public-key certificates). An authen-
tication tree created by a trusted third party, containing users’ public keys, allows au-
thentication of a large number of such keys.

2. trusted timestamping service. Creation of an authentication tree by a trusted third
party, in a similar way, facilitates a trusted timestamping service (see §13.8.1).

3. authentication of user validation parameters. Creation of a tree by a single user al-
lows that user to publish, with verifiable authenticity, a large number of its own public
validation parameters, such as required in one-time signature schemes (see §11.6.3).

To facilitate discussion of authentication trees, binary trees are first introduced.
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Binary trees

A binary tree is a structure consisting of vertices and directed edges. The vertices are di-
vided into three types:

1. a root vertex. The root has two edges directed towards it, a left and a right edge.
2. internal vertices. Each internal vertex has three edges incident to it – an upper edge

directed away from it, and left and right edges directed towards it.
3. leaves. Each leaf vertex has one edge incident to it, and directed away from it.

The vertices incident with the left and right edges of an internal vertex (or the root) are called
the children of the internal vertex. The internal (or root) vertex is called the parent of the
associated children. Figure 13.5 illustrates a binary tree with 7 vertices and 6 edges.

Root

Right EdgeLeft Edge

Figure 13.5: A binary tree (with 4 shaded leaves and 3 internal vertices).

13.16 Fact There is a unique directed path from any non-root vertex in a binary tree to the root
vertex.

Constructing and using authentication trees

Consider a binary tree T which has t leaves. Let h be a collision-resistant hash function. T
can be used to authenticate t public values, Y1, Y2, . . . , Yt, by constructing an authentica-
tion tree T ∗ as follows.

1. Label each of the t leaves by a unique public value Yi.
2. On the edge directed away from the leaf labeled Yi, put the label h(Yi).
3. If the left and right edge of an internal vertex are labeledh1 andh2, respectively, label

the upper edge of the vertex h(h1‖h2).
4. If the edges directed toward the root vertex are labeledu1 and u2, label the root vertex
h(u1‖u2).

Once the public values are assigned to leaves of the binary tree, such a labeling is well-
defined. Figure 13.6 illustrates an authentication tree with 4 leaves. Assuming some means
to authenticate the label on the root vertex, an authentication tree provides a means to au-
thenticate any of the t public leaf values Yi, as follows. For each public value Yi, there is
a unique path (the authentication path) from Yi to the root. Each edge on the path is a left
or right edge of an internal vertex or the root. If e is such an edge directed towards vertex
x, record the label on the other edge (not e) directed toward x. This sequence of labels (the
authentication path values) used in the correct order provides the authentication of Yi, as il-
lustrated by Example 13.17. Note that if a single leaf value (e.g., Y1) is altered, maliciously
or otherwise, then authentication of that value will fail.
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Y3

Y4

h(Y2)

h(Y3)

h(Y4)

R = h(h2‖h(Y4))

Y1 Y2

h(Y1)

h1 = h(h(Y1)‖h(Y2))

h2 = h(h1‖h(Y3))

Figure 13.6: An authentication tree.

13.17 Example (key verification using authentication trees) Refer to Figure 13.6. The public
valueY1 can be authenticated by providing the sequence of labels h(Y2), h(Y3), h(Y4). The
authentication proceeds as follows: compute h(Y1); next compute h1 = h(h(Y1))‖h(Y2));
then compute h2 = h(h1‖h(Y3)); finally, accept Y1 as authentic if h(h2‖h(Y4)) = R,
where the root value R is known to be authentic. �

The advantage of authentication trees is evident by considering the storage required to
allow authentication of t public values using the following (very simple) alternate approach:
an entity A authenticates t public values Y1, Y2, . . . , Yt by registering each with a trusted
third party. This approach requires registration of t public values, which may raise storage
issues at the third party when t is large. In contrast, an authentication tree requires only a
single value be registered with the third party.

If a public key Yi of an entityA is the value corresponding to a leaf in an authentication
tree, and A wishes to provideB with information allowing B to verify the authenticity of
Yi, then A must (store and) provide to B both Yi and all hash values associated with the
authentication path from Yi to the root; in addition,B must have prior knowledge and trust
in the authenticity of the root value R. These values collectively guarantee authenticity,
analogous to the signature on a public-key certificate. The number of values each party must
store (and provide to others to allow verification of its public key) is lg(t), as per Fact 13.19.

13.18 Fact (depth of a binary tree) Consider the length of (or number of edges in) the path from
each leaf to the root in a binary tree. The length of the longest such path is minimized when
the tree is balanced, i.e., when the tree is constructed such that all such paths differ in length
by at most one. The length of the path from a leaf to the root in a balanced binary tree
containing t leaves is about lg(t).

13.19 Fact (length of authentication paths) Using a balanced binary tree (Fact 13.18) as an au-
thentication tree with t public values as leaves, authenticating a public value therein may
be achieved by hashing lg(t) values along the path to the root.

13.20 Remark (time-space tradeoff ) Authentication trees require only a single value (the root
value) in a tree be registered as authentic, but verification of the authenticity of any particu-
lar leaf value requires access to and hashing of all values along the authentication path from
leaf to root.

13.21 Remark (changing leaf values) To change a public (leaf) value or add more values to an
authentication tree requires recomputation of the label on the root vertex. For large balanced
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trees, this may involve a substantial computation. In all cases, re-establishing trust of all
users in this new root value (i.e., its authenticity) is necessary.

The computational cost involved in adding more values to a tree (Remark 13.21) may
motivate constructing the new tree as an unbalanced tree with the new leaf value (or a sub-
tree of such values) being the right child of the root, and the old tree, the left. Another
motivation for allowing unbalanced trees arises when some leaf values are referenced far
more frequently than others.

13.4.2 Public-key certificates

Public-key certificates are a vehicle by which public keys may be stored, distributed or for-
warded over unsecured media without danger of undetectable manipulation. The objective
is to make one entity’s public key available to others such that its authenticity (i.e., its status
as the true public key of that entity) and validity are verifiable. In practice, X.509 certifi-
cates are commonly used (see page 587). Further details regarding public-key certificates
follow.

13.22 Definition A public-key certificate is a data structure consisting of a data part and a sig-
nature part. The data part contains cleartext data including, as a minimum, a public key
and a string identifying the party (subject entity) to be associated therewith. The signature
part consists of the digital signature of a certification authority over the data part, thereby
binding the subject entity’s identity to the specified public key.

The Certification Authority (CA) is a trusted third party whose signature on the cer-
tificate vouches for the authenticity of the public key bound to the subject entity. The sig-
nificance of this binding (e.g., what the key may be used for) must be provided by addi-
tional means, such as an attribute certificate or policy statement. Within the certificate, the
string which identifies the subject entity must be a unique name within the system (distin-
guished name), which the CA typically associates with a real-world entity. The CA requires
its own signature key pair, the authentic public key of which is made available to each party
upon registering as an authorized system user. This CA public key allows any system user,
through certificate acquisition and verification, to transitively acquire trust in the authentic-
ity of the public key in any certificate signed by that CA.

Certificates are a means for transferring trust, as opposed to establishing trust origi-
nally. The authenticity of the CA’s public key may be originally provided by non-cryptogra-
phic means including personal acquisition, or through trusted couriers; authenticity is re-
quired, but not secrecy.

Examples of additional information which the certificate data part might contain in-
clude:

1. a validity period of the public key;
2. a serial number or key identifier identifying the certificate or key;
3. additional information about the subject entity (e.g., street or network address);
4. additional information about the key (e.g., algorithm and intended use);
5. quality measures related to the identification of the subject entity, the generation of

the key pair, or other policy issues;
6. information facilitating verification of the signature (e.g., a signature algorithm iden-

tifier, and issuing CA’s name);
7. the status of the public key (cf. revocation certificates, §13.6.3).
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(i) Creation of public-key certificates

Before creating a public-key certificate for a subject entity A, the certification authority
should take appropriate measures (relative to the security level required, and customary
business practices), typically non-cryptographic in nature, to verify the claimed identity of
A and the fact that the public key to be certified is actually that of A. Two cases may be
distinguished.

Case 1: trusted party creates key pair. The trusted party creates a public-key pair, as-
signs it to a specific entity, and includes the public key and the identity of that entity in the
certificate. The entity obtains a copy of the corresponding private key over a secure (au-
thentic and private) channel after proving its identity (e.g., by showing a passport or trusted
photo-id, in person). All parties subsequently using this certificate essentially delegate trust
to this prior verification of identity by the trusted party.

Case 2: entity creates own key pair. The entity creates its own public-key pair, and se-
curely transfers the public key to the trusted party in a manner which preserves authenticity
(e.g., over a trusted channel, or in person). Upon verification of the authenticity (source) of
the public key, the trusted party creates the public-key certificate as above.

13.23 Remark (proof of knowledge of private key) In Case 2 above, the certification authority
should require proof of knowledge of the corresponding private key, to preclude (among
other possible attacks) an otherwise legitimate party from obtaining, for malicious purposes,
a public-key certificate binding its name to the public key of another party. For the case of
signature public keys, this might be done by the party providing its own signature on a sub-
set of the data part of the certificate; or by responding to a challenge r1 randomized by the
party itself e.g., signing h(r1||r2) for an appropriate hash function h and a random number
r2 chosen by the signer.

(ii) Use and verification of public-key certificates

The overall process whereby a partyB uses a public-key certificate to obtain the authentic
public key of a party A may be summarized as follows:

1. (One-time) acquire the authentic public key of the certification authority.
2. Obtain an identifying string which uniquely identifies the intended party A.
3. Acquire over some unsecured channel (e.g. from a central public database of certifi-

cates, or from A directly), a public-key certificate corresponding to subject entity A
and agreeing with the previous identifying string.

4. (a) Verify the current date and time against the validity period (if any) in the cer-
tificate, relying on a local trusted time/day-clock;

(b) Verify the current validity of the CA’s public key itself;
(c) Verify the signature on A’s certificate, using the CA’s public key;
(d) Verify that the certificate has not been revoked (§13.6.3).

5. If all checks succeed, accept the public key in the certificate as A’s authentic key.

13.24 Remark (life cycle reasons for single-key certificates) Due to differing life cycle require-
ments for different types of keys (e.g., differing cryptoperiods, backup, archival, and other
lifetime protection requirements – see §13.7), separate certificates are recommended for
separate keys, as opposed to including several keys in a single certificate. See also Re-
mark 13.32.
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(iii) Attribute certificates

Public-key certificates bind a public key and an identity, and include additional data fields
necessary to clarify this binding, but are not intended for certifying additional information.
Attribute certificates are similar to public-key certificates, but specifically intended to allow
specification of information (attributes) other than public keys (but related to a CA, entity,
or public key), such that it may also be conveyed in a trusted (verifiable) manner. Attribute
certificates may be associated with a specific public key by binding the attribute informa-
tion to the key by the method by which the key is identified, e.g., by the serial number of a
corresponding public-key certificate, or to a hash-value of the public key or certificate.

Attribute certificates may be signed by an attribute certification authority, created in
conjunction with an attribute registration authority, and distributed in conjunction with an
attribute directory service (cf. Figure 13.3). More generally, any party with a signature key
and appropriate recognizable authority may create an attribute certificate. One application
is to certify authorization information related to a public key. More specifically, this may
be used, for example, to limit liability resulting from a digital signature, or to constrain the
use of a public key (e.g., to transactions of limited values, certain types, or during certain
hours).

13.4.3 Identity-based systems

Identity-based systems resemble ordinary public-key systems, involving a private transfor-
mation and a public transformation, but users do not have explicit public keys as before. In-
stead, the public key is effectively replaced by (or constructed from) a user’s publicly avail-
able identity information (e.g., name and network or street address). Any publicly available
information which uniquely identifies a user and can be undeniably associated with the user,
may serve as the identity information.

13.25 Definition An identity-based cryptographic system (ID-based system) is an asymmetric
system wherein an entity’s public identification information (unique name) plays the role
of its public key, and is used as input by a trusted authority T (along with T ’s private key)
to compute the entity’s corresponding private key.

After computing it, T transfers the entity’s private key to the entity over a secure (au-
thentic and private) channel. This private key is computed from not only the entity’s identity
information, but must also be a function of some privileged information known only to T
(T ’s private key). This is necessary to prevent forgery and impersonation – it is essential
that only T be able to create valid private keys corresponding to given identification in-
formation. Corresponding (authentic) publicly available system data must be incorporated
in the cryptographic transformations of the ID-based system, analogous to the certification
authority’s public key in certificate-based systems. Figure 13.7(b) on page 564 illustrates
the design of an identity-based system. In some cases, additional system-defined public
data DA must be associated with each user A in addition to its a priori identity IDA (see
Remark 13.27); such systems are no longer “purely” identity-based, although neither the
authenticity ofDA nor IDA need be explicitly verified.

13.26 Remark (authenticity in ID-based systems) ID-based systems differ from public-key sys-
tems in that the authenticity of user-specific public data is not (and need not be) explicitly
verified, as is necessary for user public keys in certificate-based systems. The inherent re-
dundancy of user public data in ID-based systems (derived through the dependence of the
corresponding private key thereon), together with the use of authentic public system data,
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implicitly protects against forgery; if incorrect user public data is used, the cryptographic
transformations simply fail. More specifically: signature verification fails, entity authenti-
cation fails, public-key encryption results in undecipherable text, and key-agreement results
in parties establishing different keys, respectively, for (properly constructed) identity-based
signature, authentication, encryption, and key establishment mechanisms.

The motivation behind ID-based systems is to create a cryptographic system modeling
an ideal mail system wherein knowledge of a person’s name alone suffices to allow mail to
be sent which that person alone can read, and to allow verification of signatures that person
alone could have produced. In such an ideal cryptographic system:

1. users need exchange neither symmetric keys nor public keys;
2. public directories (files of public keys or certificates) need not be kept; and
3. the services of a trusted authority are needed solely during a set-up phase (during

which users acquire authentic public system parameters, to be maintained).

13.27 Remark (ideal vs. actual ID-based systems) A drawback in many concrete proposals of
ID-based systems is that the required user-specific identity data includes additional data (an
integer or public data value), denoted DA in Figure 13.7(b), beyond an a priori identity
IDA. For example, see Note 10.29(ii) on Feige-Fiat-Shamir identification. Ideally,DA is
not required, as a primary motivation for identity-based schemes is to eliminate the need
to transmit public keys, to allow truly non-interactive protocols with identity information
itself sufficing as an authentic public key. The issue is less significant in signature and iden-
tification schemes where the public key of a claimant is not required until receiving a mes-
sage from that claimant (in this caseDA is easily provided); but in this case, the advantage
of identity-based schemes diminishes. It is more critical in key agreement and public-key
encryption applications where another party’s public key is needed at the outset. See also
Remark 13.31.

13.28 Example (ID-based system implemented using chipcards) A simplified ID-based system
based on chipcards may be run as follows. A third party T , acting as a trusted key genera-
tion system, is responsible solely for providing each user a chipcard during a set-up phase,
containing that party’s ID-based private key, after carrying out a thorough identity check.
If no further users need be added, T may publish the public system data and cease to exist.
Users are responsible for not disclosing their private keys or losing their cards. �

13.4.4 Implicitly-certified public keys

Another variation of public-key systems is asymmetric systems with implicitly-certified
public keys. Here explicit user public keys exist (see Figure 13.7(c)), but they must be re-
constructed rather than transported by public-key certificates as per certificate-based sys-
tems. For other advantages, see Remark 13.30. Examples of specific such mechanisms are
given in §12.6.2. Systems with implicitly-certified public keys are designed such that:

1. Entities’ public keys may be reconstructed (by other parties) from public data (which
essentially replace a certificate).

2. The public data from which a public key is reconstructed includes:

(a) public (i.e., system) data associated with a trusted party T ;
(b) the user entity’s identity (or identifying information, e.g., name and address);
(c) additional per-user public data (reconstruction public data).
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3. The integrity of a reconstructed public key is not directly verifiable, but a “correct”
public key can be recovered only from authentic user public data.

Regarding authenticity of reconstructed public keys, the system design must guarantee:
1. Alteration of either a user’s identity or reconstruction public data results in recov-

ery of a corrupted public key, which causes denial of service but not cryptographic
exposure (as per Remark 13.26).

2. It is computationally infeasible for an adversary (without knowledge of T ’s private
data) to compute a private key corresponding to any party’s public key, or to construct
a matching user identity and reconstruction public data for which a corresponding
private key may also be computed. Reconstructed public keys are thus implicitly au-
thenticated by construction.

13.29 Remark (applications of implicitly-certified keys) Implicitly-certified public keys may be
used as an alternate means for distributing public keys (e.g., Diffie-Hellman keys – see
§12.6.3) in various key agreement protocols, or in conjunction with identification protocols,
digital signature schemes, and public-key encryption schemes.

Classes of implicitly-certified public keys

Two classes of implicitly-certified public keys may be distinguished:
1. identity-based public keys (Class 1). The private key of each entity A is computed

by a trusted party T , based on A’s identifying information and T ’s private key; it is
also a function ofA’s user-specific reconstruction public data, which is fixed a priori
by T . A’s private key is then securely transferred by T to A. An example is Mecha-
nism 12.59.

2. self-certified public keys (Class 2). Each entity A itself computes its private key and
corresponding public key. A’s reconstruction public data (rather thanA’s private key,
as in Class 1) is computed byT as a function of the public key (transferred to T byA),
A’s identifying information, and T ’s private key. An example is Mechanism 12.61.

Class 1 requires more trust in the third party, which therein has access to users’ private
keys. This differs from Class 2, as emphasized by the term “self” in “self-certified”, which
refers to the knowledge of this key being restricted to the entity itself.

13.4.5 Comparison of techniques for distributing public keys

§13.4 began with an overview of techniques for addressing authenticity in public key dis-
tribution. The basic approaches of §13.4.2, §13.4.3, and §13.4.4 are discussed further here.
Figure 13.7 illustrates corresponding classes of asymmetric signature systems, contrasting

public-key systems (with explicit public keys), identity-based systems (the public key is a
user’s identity information), and systems with implicitly-certified public keys (an explicit
public key is reconstructed from user public data).4 The main differences are as follows:

1. Certificate-based public-key systems have explicit public keys, while ID-based sys-
tems do not; in implicitly-certified systems explicit public keys are reconstructed.
The explicit public key in public-key systems (Figure 13.7(a)) is replaced by:

(a) the triplet (DA, IDA, PT ) for identity-based systems (Figure 13.7(b)). IDA is
an identifying string for A, DA is additional public data (defined by T and re-
lated to IDA andA’s private key), and PT consists of the trusted public key (or
system parameters) of a trusted authority T .

4While the figure focuses (for concreteness) on signature systems, concepts carry over analogously for asym-
metric entity authentication, key establishment, and encryption systems.
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Figure 13.7: Key management in different classes of asymmetric signature systems.
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(b) the triplet (RA, IDA, PT ) for systems with implicitly-certified public keys (Fig-
ure 13.7(c)). In this case, an explicit public key PA is reconstructed from these
parameters. The reconstruction public data RA plays a role analogous to the
public dataDA in Figure 13.7(b).

2. The authenticity of public keys can (and must) be explicitly verified in certificate-
based systems, but not (and need not) in ID-based or implicitly-certified systems.

3. The trusted authority need not know users’ private keys in certificate-based public-
key systems or implicitly-certified systems with self-certified public keys; but does
in ID-based systems, and in implicitly-certified systems with ID-based keys.

4. Similar to identity-based systems (§13.4.3), implicitly-certified public keys (of both
classes) depend on an entity’s identifying information, and in this sense are also
“identity-based”. However, ID-based systems avoid explicit public keys entirely (a
user’s identity data is essentially its public key), while implicitly-certified public keys
are not restricted to user identities and may be explicitly computed (and thus more
easily used in conjunction with ordinary public-key schemes).

5. The two classes of implicitly-certified public keys (Figure 13.7(c)) differ in their re-
lationship between users’ reconstruction public data and private keys as follows.

(a) Class 1: a user’s private key is computed as a function of the reconstruction
data, and this private key is computed by the trusted authority;

(b) Class 2: the reconstruction data is computed as a function of the user’s public
key, and the corresponding private key is computed by the party itself.

6. In all three approaches, at some stage a third party which is trusted to some level (cf.
Note 13.7) is required to provide a link transferring trust between users who may have
never met each other and may share nothing in common other than authentic system
parameters (and possibly knowledge of other users’ identities).

13.30 Remark (implicitly-certified public keys vs. public-key certificates) Advantages of implic-
itly-certified public keys over public-key certificates include: possibly reduced space re-
quirements (signed certificates require storage for signatures); possible computational sav-
ings (signature verification, as required for certificates, is avoided); and possible communi-
cations savings (e.g. if identity-based and the identity is known a priori). Countering these
points, computation is actually required to reconstruct a public key; and additional recon-
struction public data is typically required.

13.31 Remark (key revocation in ID-based systems) Revocation of public keys may be address-
ed in ID-based schemes and systems using implicitly-certified public keys by incorporating
information such as a key validity period or serial number into the identification string used
to compute an entity’s public key (cf. Remark 13.27). The revocation issue is then analo-
gous to that for public-key certificates. Additional information, e.g., pertaining to key usage
or an associated security policy, may similarly be incorporated.
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13.5 Techniques for controlling key usage

This section considers techniques for restricting keys to pre-authorized uses.

13.5.1 Key separation and constraints on key usage

Information that may be associated with cryptographic keys includes both attributes which
restrict their use, and other information of operational use. These include:

1. owner of key
2. validity period (intended cryptoperiod)
3. key identifier (allowing non-cryptographic reference to the key)
4. intended use (see Table 13.2 for a coarse selection)
5. specific algorithm
6. system or environment of intended use, or authorized users of key
7. names of entities associated with key generation, registration, and certification
8. integrity checksum on key (usually part of authenticity requirement)

Key separation and the threat of key misuse

In simple key management systems, information associated with keys, including authorized
uses, are inferred by context. For additional clarity or control, information explicitly spec-
ifying allowed uses may accompany distributed keys and be enforced by verification, at
the time of use, that the attempted uses are authorized. If control information is subject to
manipulation, it should be bound to the key by a method which guarantees integrity and au-
thenticity, e.g., through signatures (cf. public-key certificates) or an encryption technique
providing data integrity.

The principle of key separation is that keys for different purposes should be crypto-
graphically separated (see Remark 13.32). The threat of key misuse may be addressed by
techniques which ensure that keys are used only for those purposes pre-authorized at the
time of key creation. Restrictions on key usage may be enforced by procedural techniques,
physical protection (tamper-resistant hardware), or cryptographic techniques as discussed
below.

Discussion of other methods in §13.5.2 includes key tags, which allow key separation
with explicitly-defined uses; key variants, which separate keys without explicitly defining
authorized uses; and key notarization and control vectors, which bind control information
into the process by which keys are derived.

13.32 Remark (cryptographic reasons for key separation) A principle of sound cryptographic
design is to avoid use of the same cryptographic key for multiple purposes. A key-encrypt-
ing key should not be used interchangeably as a data encryption key, since decrypted keys
are not generally made available to application programs, whereas decrypted data is. Dis-
tinct asymmetric encryption and signature keys are also generally used, due to both dif-
fering life cycle requirements and cryptographic prudence. Flaws also potentially arise if:
asymmetric keys are used for both signatures and challenge-response entity authentication
(Remark 10.40); keys are used for both encryption and challenge-response entity authen-
tication (chosen-text attacks); symmetric keys are used for both encryption and message
authentication (Example 9.88). See also Remark 13.24.
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13.5.2 Techniques for controlling use of symmetric keys

The main technique discussed below is the use of control vectors. For historical context,
key tags/key variants and key notarization are also discussed.

(i) Key tags and key variants

Key tags provide a simplified method for specifying allowed uses of keys (e.g., data-encryp-
ting vs. key-encrypting keys). A key tag is a bit-vector or structured field which accompa-
nies and remains associated with a key over its lifetime. The tag bits are encrypted jointly
with the key and thereby bound to it, appearing in plaintext form only when the key is de-
crypted. If the combination of tag bits and key are sufficiently short to allow encryption in
a single block operation (e.g., a 56-bit key with an 8-bit tag for a 64-bit block cipher), then
the inherent integrity provided by encryption precludes meaningful manipulation of the tag.

A naive method for providing key separation is to derive separate keys from a single
base key (or derivation key) using additional non-secret parameters and a non-secret func-
tion. The resulting keys are called key variants or derived keys.

One technique for varying keys is key offsetting, whereby a key-encrypting key K is
modified on a per-use basis by a counterN incremented after each use. This may prevent
replay of encrypted keys. The modified keyK⊕N is used to encrypt another (e.g., session)
key. The recipient likewise modifies K to decrypt the session key. A second technique,
complementing alternate 4-bit blocks of K commencing with the first 4 bits, is a special
case of fixed-mask offsetting (Example 13.33).

13.33 Example (key variants using fixed-mask offsets) Suppose exactly three classes of keys are
desired. Construct keys by using variations K1 and K2 of a master key K, with K1 =
K⊕v1,K2 = K⊕v2, and v1, v2 nonsecret mask values. UsingK,K1, andK2 to encrypt
other keys then allows key separation of the latter into three classes. �

If the derivation process is invertible, the base key can be recovered from the derived
key. Ideally, the derivation technique is non-reversible (one-way), implying that compro-
mise of one derived key would not compromise the base key or other derived keys (cf.
§13.7.1 on security impacts of related keys). Yet another example of key derivation (see
§12.3.1) has this property: computeKi = EK(ri)where ri is a random number, or replace
the encryption functionE by a MAC, or simply hashK and ri using a hash function hwith
suitable properties.

(ii) Key notarization

Key notarization is a technique intended to prevent key substitution by requiring explicit
specification of the identities of parties involved in a keying relationship. A key is au-
thenticated with respect to these identities (preventing impersonation) by modifying a key-
encrypting key such that the correct identities must be specified to properly recover the pro-
tected key. The key is said to be sealed with these identities. Preventing key substitution
is a requirement in all (authenticated) key establishment protocols. Notarization requires
proper control information for accurate recovery of encrypted keys, providing implicit pro-
tection analogous to implicitly-certified public keys (§13.4.4).

The basic technique (simple key notarization) involves a trusted server (notary), or one
of the parties sharing the key, using a key-encrypting keyK to encrypt a session key S, in-
tended for use with the originating party i and the recipient j, as: EK⊕(i||j)(S). Here i and
j are assumed to identify unique entities in the given system. The party intending to recover
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S from this must shareK and explicitly specify i and j in the correct order, otherwise a ran-
dom key will be recovered. The analogy to a notary originated from the assumption that the
third party properly authenticates the identities of the intended parties, and then provides a
session key which may only be recovered by these parties. A more involved process, key
notarization with offsetting, is given in Example 13.34

13.34 Example (key notarization with offsetting) Let E be a block cipher operating on 64-bit
blocks with 64-bit key,K = KL||KR be a 128-bit key-encrypting key,N a 64-bit counter,
and i = iL||iR, j = jL||jR 128-bit source and destination identifiers. For key notarization
with offsetting, compute: K1 = EKR⊕iL(jR)⊕KL⊕N , K2 = EKL⊕jL(iR)⊕KR⊕N .
The resulting 128-bit notarized key (K1,K2) then serves as a key-encrypting key in two-
key triple-encryption. The leftmost terms f1(KR, i, j) and f2(KL, i, j) in the computation
ofK1,K2 above are called notary seals, which, when combined withKL andKR, respec-
tively, result in quantities analogous to those used in simple key notarization (i.e., functions
of K, i, j). For K a 64-bit (single-length) key, the process is modified as follows: using
KL = KR = K, compute the notary seals f1(KR, i, j), f2(KL, i, j) as above, concatenate
the leftmost 32 bits of f1 with the rightmost of f2 to obtain f , then compute f⊕K⊕N as
the notarized key. �

(iii) Control vectors

While key notarization may be viewed as a mechanism for establishing authenticated keys,
control vectors provide a method for controlling the use of keys, by combining the idea of
key tags with the mechanism of simple key notarization. Associated with each key S is a
control vector C, which is a data field (similar to a key tag) defining the authorized uses of
the key (effectively typing the key). It is bound to S by varying a key-encrypting key K
before encryption: EK⊕C(S).

Key decryption thus requires the control vector be properly specified, as well as the
correct key-encrypting key; if the combined quantityK⊕C is incorrect, a spurious key of
no advantage to an adversary is recovered. Cryptographically binding the control vectorC
to S at the time of key generation prevents unauthorized manipulation ofC, assuming only
authorized parties have access to the key-encrypting keyK.

Control vectors may encompass key notarization by using one or more fields in C to
specify identities. In relation to standard models for access control (Note 13.35), a control
vector may be used to specify a subject’s identity (Si) and privileges (Ai,j) regarding the
use of a key (Kj).

At time of use for a specific cryptographic operation, the control vector is input as well
as the protected key. At this time, a check is made that the requested operation complies
with the control vector; if so, the key is decrypted using the control vector. If the control
vector does not match that bound to the protected key (or if K is incorrect), the recovered
key S′ 6= S will be spurious. Security here is dependent on the assumption that checking
is inseparable from use, and done within a trusted subsystem.

If the bitsize of the control vectorC differs from that of the keyK, a collision-resistant
hash function may be used prior to coupling. This allows arbitrary length control vectors.
Thus a 128-bit keyK and a hash function h with 128-bit output may be used to encrypt S
as: EK⊕h(C)(S).

13.35 Note (models for access control) Several methods are available to control access to re-
sources. The access matrix model uses a 2-dimensional matrix Ai×j with a row for each
subject (Si) and a column for each object (Oj), and relies on proper identification of sub-
jects Si. Each access record Ai,j specifies the privileges entity Si has on object Oj (e.g.,
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an application program may have read, write, modify, or execute privileges on a file). Col-
umn j may alternately serve as an access list for object Oj , having entries (Si, Pij) where
Pij = Ai,j specifies privileges. Another method of resource protection uses the idea of
capabilities: a capability (O,P ) specifies an objectO and privilege set P related toO, and
functions as a ticket – possession of capability (O,P ) grants the holder the specified priv-
ileges, without further validation or ticket-holder identification.

13.36 Example (sample uses of control vectors) Control vectors may be used to provide a
public-key like functionality as follows (cf. Remark 13.14). Two copies of a symmetric key
are distributed, one typed to allow encryption only (or MAC generation), and a second al-
lowing decryption only (or MAC verification). Other sample uses of control fields include:
allowing random number generation; allowing ciphertext translation (e.g., in KTCs); dis-
tinguishing data encryption and key encryption keys; or incorporation of any field within a
public-key certificate. �

13.37 Remark (key verification and preventing replay) Replay of keys distributed by key
transport protocols may be countered by the same techniques used to provide unique-
ness/timeliness and prevent replay of messages – sequence numbers, timestamps, and
challenge-response techniques (§10.3.1). Before a key resulting from a key derivation, no-
tarization, or control vector technique is actually used, verification of its integrity may be
desirable (cf. key confirmation, §12.2). This can be achieved using standard techniques for
data integrity (Figure 9.8). A simple method involves the originator sending the encryption
(under the key in question) of a data item which the recipient can recognize.

13.6 Key management involving multiple domains

This section considers key management models for systems involving multiple domains or
authorities, as opposed to the simpler single-domain models of §13.2.3.

13.38 Definition A security domain (domain) is defined as a (sub)system under the control of a
single authority which the entities therein trust. The security policy in place over a domain
is defined either implicitly or explicitly by its authority.

The trust that each entity in a domain has in its authority originates from, and is main-
tained through, an entity-specific shared secret key or password (in the symmetric case), or
possession of the authority’s authentic public key (in the asymmetric case). This allows se-
cure communications channels (with guaranteed authenticity and/or confidentiality) to be
established between the entity and authority, or between two entities in the same domain.
Security domains may be organized (e.g., hierarchically) to form larger domains.

13.6.1 Trust between two domains

Two parties A and B, belonging to distinct security domainsDA and DB with respective
trusted authoritiesTA andTB , may wish to communicate securely (orAmay wish to access
resources from a distinct domainDB). This can be reduced to the requirement that A and
B either:
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1. (share a symmetric key) establish a shared secret keyKAB which both trust as being
known only to the other (and possibly trusted authorities); or

2. (share trusted public keys) acquire trust in one or more common public keys which
may be used to bridge trust between the domains, e.g., allowing verification of the
authenticity of messages purportedly from the other, or ensure the confidentiality of
messages sent to the other.

Either of these is possible provided TA and TB have an existing trust relationship, based on
either trusted public keys or shared secret keys.

If TA and TB do have an existing trust relationship, either requirement may be met by
using this and other initial pairwise trust relationships, which allow secure communications
channels between the pairs (A, TA), (TA, TB), and (TB, B), to be successively used to es-
tablish the objective trust relationship (A,B). This may be done by A and B essentially
delegating to their respective authorities the task of acquiring trust in an entity under the
other authority (as detailed below).

If TA and TB do not share an existing trust relationship directly, a third authority TC ,
in which they both do trust, may be used as an intermediary to achieve the same end result.
This is analogous to a chain of trust in the public-key case (§13.6.2). The two numbered
options beginning this subsection are now discussed in further detail.

(3B)

(2)

Domain DA

(1) (3A)

Authority
TA

Authority
TB

Domain DB

(4)
Party A Party B

Figure 13.8: Establishing trust between users in distinct domains.

1. trusted symmetric key: Trust in a shared secret key may be acquired through a variety
of authenticated key establishment techniques (see §12.3 for detailed protocols). An
outline of steps by which parties A and B above may do so follows, with reference
to Figure 13.8.

(a) A makes a request to TA to obtain a key to share with B (1).
(b) TA and TB establish a short-term secret keyKAB (2).
(c) TA and TB , respectively, distributeKAB toA andB, guaranteeing secrecy and

authenticity (3A, 3B).
(d) A usesKAB for secure direct communications with B (4). Message (3B) may

be eliminated if its contents are relayed by TB toA via TA as part of the existing
messages (2), (3A).

In this case, fromA’s viewpoint the composition of TA, TB and the trust relationship
(TA, TB)may be seen as a single (composite) authority, whichA communicates with
through TA, and which plays the role of the (simple) authority in the standard case
of a KDC or KTC (see §13.2.3).
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2. trusted public key: Trust in a public key may be acquired, based on existing trust re-
lationships, through data origin authentication by standard techniques such as digital
signatures or message authentication codes. A may acquire the trusted public key of
party B described above as follows (cf. Figure 13.8).

(a) A requests from TA the trusted public key of user B (1).
(b) TA acquires this from TB, with guaranteed authenticity (2).
(c) TA transfers this public key to A, with guaranteed authenticity (3A).
(d) A uses this public key to secure direct communications with B (4).

13.39 Definition A cross-certificate (or CA-certificate) is a certificate created by one certifica-
tion authority (CA), certifying the public key of another CA.

13.40 Remark (user-specific vs. domain cross-trust) Method 2 above transfers toA trust specif-
ically in the public key of B; this may be called a user-specific transfer of trust. Alterna-
tively, a general transfer of trust between domains is possible as follows, assuming TB has
created a certificateCB containing the identity and public key ofB. In this case, TA creates
a cross-certificate containing the identity and public key of TB . A, possessing the trusted
signature verification key of TA, may verify the signature on this latter certificate, thereby
acquiring trust in TB’s signature verification key, and allowingA to verify and thereby trust
B’s public key within CB (or the public key in any other certificate signed by TB). Thus,
user A from domain DA (with authority TA) acquires trust in public keys certified in DB
by TB.

13.6.2 Trust models involving multiple certification authorities

Many alternatives exist for organizing trust relationships between certification authorities
(CAs) in public-key systems involving multiple CAs. These are called trust models or certi-
fication topologies, and are logically distinct from (although possibly coincident with) com-
munications models. (In particular, a communications link does not imply a trust relation-
ship.) Trust relationships between CAs determine how certificates issued by one CA may
be utilized or verified by entities certified by distinct CAs (in other domains). Before dis-
cussing various trust models, certificate chains are first introduced.

(i) Certificate chains and certification paths

Public-key certificates provide a means for obtaining authenticated public keys, provided
the verifier has a trusted verification public key of the CA which signed the certificate. In
the case of multiple certification authorities, a verifier may wish to obtain an authentic pub-
lic key by verifying a certificate signed by a CA other than one for which it (originally)
possesses a trusted public key. In this case, the verifier may still do so provided a chain of
certificates can be constructed which corresponds to an unbroken chain of trust from the
CA public key which the verifier does trust, to the public key it wishes to obtain trust in.

Certificate chains correspond to directed paths in the graphical representation of a CA
trust model (see Figure 13.9). The goal is to find a sequence of certificates corresponding
to a directed path (certification path) starting at the node corresponding to the CA whose
public key a verifier trusts a priori, and ending at the CA which has signed the certificate
of the public key to be verified.

13.41 Example (illustration of certificate chain) Consider Figure 13.9(e) on page 574. Suppose
an entity A in possession of the public key P5 of CA5 wishes to verify the certificate of an
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entityB signed byCA3, and thereby obtain trust in PB . A directed path (CA5,CA4,CA3)
exists. Let CA5{CA4} denote a certificate signed by CA5 binding the name CA4 to the
public key P4. Then the certificate chain (CA5{CA4}, CA4{CA3}), along with initial
trust in P5, allows A to verify the signature on CA5{CA4} to extract a trusted copy of P4,
use P4 to verify the signature on CA4{CA3} to extract a trusted copy of P3, and then use
P3 to verify the authenticity of (the certificate containing) PB . �

Given an initial trusted public key and a certificate to be verified, if a certificate chain
is not provided to the verifier, a method is required to find (build) the appropriate chain
from publicly available data, prior to actual cryptographic chain verification. This non-
cryptographic task resembles that of routing in standard communications networks.

13.42 Example (building certificate chains using cross-certificate pairs) One search technique
for finding the certification path given in Example 13.41 involves cross-certificate pairs.
In a public directory, in the directory entry for each CA X , for every CA Y that either
cross-certifies X or that X cross-certifies, store the certificate pair (forward, reverse) =
(CAY {CAX}, CAX{CAY }), called a cross-certificate pair. Here notation is as in Exam-
ple 13.41, the pair consists of the forward and reverse certificates of CAX (see page 575),
and at least one of the two certificates is present. In the absence of more advanced tech-
niques or routing tables, any existent certification path could be found by depth-first or
breadth-first search of the reverse certificates in cross-certificate pairs starting at the CA
whose public key the verifier possesses initially. �

As part of signature verification with certificate chains, verification of cross-certificates
requires checking they themselves have not been revoked (see §13.6.3).

(ii) Trust with separate domains

Figure 13.9 illustrates a number of possible trust models for certification, which are dis-
cussed below, beginning with the case of separated domains.

Simple public-key systems involve a single certification authority (CA). Larger sys-
tems involve two or more CAs. In this case, a trust relationship between CAs must be spec-
ified in order for users under different CAs to interoperate cryptographically. By default,
two distinct CAs define separate security domains as in Figure 13.9(a), with no trust re-
lationship between domains. Users in one domain are unable to verify the authenticity of
certificates originating in a separate domain.

(iii) Strict hierarchical trust model

The first solution to the lack of cryptographic interoperability between separate domains is
the idea of a strict hierarchy, illustrated by Figure 13.9(b). Each entity starts with the public
key of the root node – e.g., entityE(1)1 is now givenCA5’s public key at registration, rather
than that of CA1 as in figure (a). This model is called the rooted chain model, as all trust
chains begin at the root. It is a centralized trust model.

Several such rooted trees, each being a strict hierarchy, may be combined in a trust
model supporting multiple rooted trees as in Figure 13.9(c). In this case, a cross-certificate
is allowed between the roots of the trees, illustrated by a bi-directional arrow between roots.
The arrow directed fromCAX to CAY denotes a certificate for the public key ofCAY cre-
ated by CAX . This allows users in the tree under CAX to obtain trust in certificates under
CAY through certificate chains which start at CAX and cross over to CAY .

In the strict hierarchical model, all entities are effectively in a single domain (defined
by the root). Despite the fact that, for example,CA1 signs the public-key certificate ofE(1)1 ,
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(a) Separate domains (b) Strict hierarchy
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(d) Hierarchy with reverse certificates (e) Directed graph (digraph) trust model

Figure 13.9: Trust models for certification.
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E
(1)
1 trusts the root (CA5) directly but not CA1. E

(1)
1 trusts CA1 only indirectly through

the root. Potential drawbacks of this model include:
1. all trust in the system is dependent on the root key
2. certificate chains are required even for two entities under the same CA
3. certificate chains become long in deep hierarchies
4. a more natural model in some organizations is for trust to begin at a local node (the

parent CA) rather than a distant node (the root).

(iv) Reverse certificates and the general digraph trust model

A more general hierarchical model, a hierarchy with reverse certificates, is illustrated in
Figure 13.9(d). This resembles the strict hierarchy of Figure 13.9(b), but now each CA
lower in the hierarchy also creates certificates certifying the public keys of its directly su-
perior (parent) CA. Two types of certificates may then be distinguished in a hierarchy:

1. forward certificate. A forward certificate (relative to CAX ) is created by the CA di-
rectly aboveCAX signing the public key ofCAX , and illustrated in the hierarchy by
a downward arrow towards CAX .

2. reverse certificate. A reverse certificate (relative toCAX ) is created byCAX signing
the public key of its immediately superior CA, and illustrated in the hierarchy by an
upward arrow originating from CAX .

In this model, each entity starts not with the public key of the root, but rather with the public
key of the CA which created its own certificate, i.e., its local CA (parent). All trust chains
now begin at an entity’s local CA. The shortest trust chain from any entity A to any other
entity B is now the path in the tree which travels upwards from A to the least-common-
ancestor of A and B, and downwards from that node on to B.

A drawback of the hierarchical model with reverse certificates is that long certificate
chains may arise between entities which are under distinct CAs even if these entities com-
municate frequently (e.g., consider entities underCA1 andCA4 in Figure 13.9(d). This sit-
uation can be ameliorated by allowingCA1 to cross-certifyCA4 directly, even though this
edge is not in the hierarchy. This is the most general model, the directed graph (digraph)
trust model as illustrated in Figure 13.9(e). The analogy to graph theory is as follows: CAs
are represented by nodes or vertices in a graph, and trust relationships by directed edges.
(The complete graph on n vertices, with a directed edge from each vertex to every other,
corresponds to complete trust, with each CA cross-certifying every other directly.)

The digraph model is a distributed trust model. There is no central node or root, any
CA may cross-certify any other, and each user-entity begins with the trusted public key of
its local CA. The concept of a hierarchy remains useful as a reference for organizing trust
relationships. This model may be used to implement the other trust models discussed above,
including strict hierarchies if variation is permitted in the trusted public key(s) end-user en-
tities are provided with initially.

13.43 Remark (assigning end-users to CAs) In hierarchical models, one option is to specify that
only CAs at the lowest level certify end-users, while internal CAs serve (only) to cross-
certify other CAs. In the general digraph model, where all CAs are considered equal, it is
more natural to allow every CA to certify end-users.

(v) Constraints in trust models

Trust obtained through certificate chains requires successful verification of each certificate
forming a link in the chain. Once a CA (CAX ) cross-certifies the public key of another
CA (CAY ), in the absence of additional constraints, this trust extended by CAX is transi-
tively granted to all authorities which may be reached by certificate chains originating from
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CAY . To limit the scope of trust extended by a single cross-certificate, a CA may impose
constraints on cross-certificates it signs. Such constraints would be enforced during verifi-
cation of certificate chains, and might be recorded explicitly through additional certificate
fields indicating specific policies, or through attribute certificates (§13.4.2). Examples of
simple constraints on cross-certificates include:

1. limiting chain length. A constraint may be imposed on the length of the certificate
chain which may follow the cross-certificate in question. For example, a CA may
limit the extent of trust granted to CAs which it directly cross-certifies by specifying,
in all cross-certificates it signs, that that certificate must be the last CA-certificate in
any trust chain.

2. limiting the set of valid domains. A set of CAs (or domain names) may be specified as
valid with respect to a given cross-certificate. All CAs in a certificate chain following
the cross-certificate in question may be required to belong to this set.

Certification may also be carried out relative to a certification policy specifying the
conditions under which certification took place, including e.g., the type of authentication
carried out on the certificate subject before certifying a key, and the method used to guar-
antee unique subject names in certificates.

13.6.3 Certificate distribution and revocation

A certificate directory (cf. §13.2.4) is a database which implements a pull model – users
extract (pull) certificates from the database as necessary. A different model of certificate
distribution, the push model, involves certificates being sent out (pushed) to all users upon
certificate creation or periodically; this may be suitable for closed systems. Alternatively,
individual users may provide their certificates to others when specifically needed, e.g., for
signature verification. In certificate-based systems with certificate revocation lists (CRLs –
see below), a method for distribution of CRLs as well as certificates is required.

A certificate directory is usually viewed as an unsecured third party. While access con-
trol to the directory in the form of write and delete protection is necessary to allow mainte-
nance and update without denial of service, certificates themselves are individually secured
by the signatures thereon, and need not be transferred over secured channels. An exception
is on-line certificates, which are created by a certification authority in real-time on request
and have no on-going lifetime, or are distributed by a trusted party which guarantees they
have not been revoked.

Certificate or CRL caching may be used, whereby frequently referenced items are sav-
ed in short-term local storage to avoid the cost of repeated retrievals. Cached CRLs must
be refreshed sufficiently often to ensure recent revocations are known.

Certificate revocation and CRLs

Upon compromise of a secret key, damage may be minimized by preventing subsequent
use of or trust in the associated keying material. (Note the implications differ between sig-
nature and encryption keys.) Here compromise includes any situation whereby an adver-
sary gains knowledge of secret data. If public keys must be obtained in real-time from a
trusted on-line server, the keys in question may be immediately removed or replaced. The
situation involving certificates is more difficult, as all distributed copies must be effectively
retracted. While (suspected or actual) key compromise may be rare, there may be other rea-
sons a CA will prematurely dissolve its binding of a public key to a user name (i.e., revoke
the certificate). Reasons for early termination of keying material include the associated en-
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tity leaving or changing its role within an organization, or ceasing to require authorization
as a user. Techniques for addressing the problem of revoked keys include:

1. expiration dates within certificates. Expiration dates limit exposure following com-
promise. The extreme case of short validity periods resembles on-line certificates
which expire essentially immediately. Short-term certificates without CRLs may be
compared to long-term certificates with frequently updated CRLs.

2. manual notification. All system users are informed of the revoked key by out-of-band
means or special channels. This may be feasible in small or closed systems.

3. public file of revoked keys. A public file is maintained identifying revoked keys, to
be checked by all users before key use. (The authenticity of data extracted from the
file may be provided by similar techniques as for public keys – see §13.4.)

4. certificate revocation lists (CRLs). A CRL is one method of managing a public file
of revoked keys (see below).

5. revocation certificates. An alternative to CRLs, these may be viewed as public-key
certificates containing a revocation flag and a time of revocation, serving to cancel
the corresponding certificate. The original certificate may be removed from the cer-
tificate directory and replaced by the revocation certificate.

A CRL is a signed list of entries corresponding to revoked public keys, with each en-
try indicating the serial number of the associated certificate, the time the revocation was
first made, and possibly other information such as the revocation reason. The list signature,
guaranteeing its authenticity, is generated by the CA which originally issued the certificates;
the CRL typically includes this name also. Inclusion of a date on the overall CRL provides
an indication of its freshness. If CRLs are distributed using a pull model (e.g., via a public
database), they should be issued at regular intervals (or intervals as advertised within the
CRL itself) even if there are no changes, to prevent new CRLs being maliciously replaced
by old CRLs.

Revoked cross-certificates may be specified on separate authority revocation lists
(ARLs), analogous to CRLs (which are then restricted to revoked end-user certificates).

13.44 Note (CRL segmenting) For reasons of operational efficiency when large CRLs may arise,
an option is to distribute CRLs in pieces. One technique is to use delta-CRLs: upon each
CRL update, only new entries which have been revoked since the last issued CRL are in-
cluded. This requires end-users maintain (and update) secured, local images of the current
CRL. A second technique is to partition a CRL into segments based on revocation reason.
A third is to segment a CRL by pre-assigning each certificate (upon creation) to a specified
sub-list, with a limit nmax on the number of certificates pre-assigned to any segment and
new segments created as required. In all cases, for each certificate, available information
must indicate which CRL segment must be consulted.

13.7 Key life cycle issues

Key management is simplest when all cryptographic keys are fixed for all time. Cryptope-
riods necessitate the update of keys. This imposes additional requirements, e.g., on certifi-
cation authorities which maintain and update user keys. The set of stages through which a
key progresses during its existence, referred to as the life cycle of keys, is discussed in this
section.
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13.7.1 Lifetime protection requirements

Controls are necessary to protect keys both during usage (cf. §13.5.2) and storage. Regard-
ing long-term storage of keys, the duration of protection required depends on the crypto-
graphic function (e.g., encryption, signature, data origin authentication/integrity) and the
time-sensitivity of the data in question.

Security impact of dependencies in key updates

Keying material should be updated prior to cryptoperiod expiry (see Definition 13.10). Up-
date involves use of existing keying material to establish new keying material, through ap-
propriate key establishment protocols (Chapter 12) and key layering (§13.3.1).

To limit exposure in case of compromise of either long term secret keys or past ses-
sion keys, dependencies among keying material should be avoided. For example, securing
a new session key by encrypting it under the old session key is not recommended (since
compromise of the old key compromises the new). See §12.2.3 regarding perfect forward
secrecy and known-key attacks.

Lifetime storage requirements for various types of keys

Stored secret keys must be secured so as to provide both confidentiality and authenticity.
Stored public keys must be secured such that their authenticity is verifiable. Confidentiality
and authenticity guarantees, respectively countering the threats of disclosure and modifica-
tion, may be provided by cryptographic techniques, procedural (trust-based) techniques, or
physical protection (tamper-resistant hardware).

Signature verification public keys may require archival to allow signature verification
at future points in time, including possibly after the private key ceases to be used. Some
applications may require that signature private keys neither be backed up nor archived: such
keys revealed to any party other than the owner potentially invalidates the property of non-
repudiation. Note here that loss (without compromise) of a signature private key may be
addressed by creation of a new key, and is non-critical as such a private key is not needed for
access to past transactions; similarly, public encryption keys need not be archived. On the
other hand, decryption private keys may require archival, since past information encrypted
thereunder might otherwise be lost.

Keys used for entity authentication need not be backed up or archived. All secret keys
used for encryption or data origin authentication should remain secret for as long as the
data secured thereunder requires continued protection (the protection lifetime), and backup
or archival is required to prevent loss of this data or verifiability should the key be lost.

13.7.2 Key management life cycle

Except in simple systems where secret keys remain fixed for all time, cryptoperiods associ-
ated with keys require that keys be updated periodically. Key update necessitates additional
procedures and protocols, often including communications with third parties in public-key
systems. The sequence of states which keying material progresses through over its lifetime
is called the key management life cycle. Life cycle stages, as illustrated in Figure 13.10,
may include:

1. user registration – an entity becomes an authorized member of a security domain.
This involves acquisition, or creation and exchange, of initial keying material such as
shared passwords or PINs by a secure, one-time technique (e.g., personal exchange,
registered mail, trusted courier).
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Figure 13.10: Key management life cycle.

2. user initialization – an entity initializes its cryptographic application (e.g., installs
and initializes software or hardware), involving use or installation (see below) of ini-
tial keying material obtained during user registration.

3. key generation – generation of cryptographic keys should include measures to ensure
appropriate properties for the intended application or algorithm and randomness in
the sense of being predictable (to adversaries) with negligible probability (see Chap-
ter 5). An entity may generate its own keys, or acquire keys from a trusted system
component.

4. key installation – keying material is installed for operational use within an entity’s
software or hardware, by a variety of techniques including one or more of the follow-
ing: manual entry of a password or PIN, transfer of a disk, read-only-memorydevice,
chipcard or other hardware token or device (e.g., key-loader). The initial keying ma-
terial may serve to establish a secure on-line session through which working keys are
established. During subsequent updates, new keying material is installed to replace
that in use, ideally through a secure on-line update technique.

5. key registration – in association with key installation, keying material may be offi-
cially recorded (by a registration authority) as associated with a unique name which
distinguishes an entity. For public keys, public-key certificates may be created by a
certification authority (which serves as guarantor of this association), and made avail-
able to others through a public directory or other means (see §13.4).
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6. normal use – the objective of the life cycle is to facilitate operational availability of
keying material for standard cryptographic purposes (cf. §13.5 regarding control of
keys during usage). Under normal circumstances, this state continues until cryptope-
riod expiry; it may also be subdivided – e.g., for encryption public-key pairs, a point
may exist at which the public key is no longer deemed valid for encryption, but the
private key remains in (normal) use for decryption.

7. key backup – backup of keying material in independent, secure storage media pro-
vides a data source for key recovery (point 11 below). Backup refers to short-term
storage during operational use.

8. key update – prior to cryptoperiod expiry, operational keying material is replaced by
new material. This may involve some combination of key generation, key deriva-
tion (§13.5.2), execution of two-party key establishment protocols (Chapter 12), or
communications with a trusted third party. For public keys, update and registration
of new keys typically involves secure communications protocols with certification
authorities.

9. archival – keying material no longer in normal use may be archived to provide a
source for key retrieval under special circumstances (e.g., settling disputes involving
repudiation). Archival refers to off-line long-term storage of post-operational keys.

10. key de-registration and destruction – once there are no further requirements for the
value of a key or maintaining its association with an entity, the key is de-registered
(removed from all official records of existing keys), and all copies of the key are de-
stroyed. In the case of secret keys, all traces are securely erased.

11. key recovery – if keying material is lost in a manner free of compromise (e.g., due to
equipment failure or forgotten passwords), it may be possible to restore the material
from a secure backup copy.

12. key revocation – it may be necessary to remove keys from operational use prior to
their originally scheduled expiry, for reasons including key compromise. For public
keys distributed by certificates, this involves revoking certificates (see §13.6.3).

Of the above stages, all are regularly scheduled, except key recovery and key revoca-
tion which arise under special situations.

13.45 Remark (public-key vs. symmetric-key life cycle) The life cycle depicted in Figure 13.10
applies mainly to public-key pairs, and involves keying material of only a single party. The
life cycle of symmetric keys (including key-encrypting and session keys) is generally less
complex; for example, session keys are typically not registered, backed up, revoked, or
archived.

Key states within life cycle

The typical events involving keying material over the lifetime of the key define stages of
the life cycle. These may be grouped to define a smaller set of states for cryptographic
keys, related to their availability for use. One classification of key states is as follows (cf.
Figure 13.10):

1. pre-operational. The key is not yet available for normal cryptographic operations.
2. operational. The key is available, and in normal use.
3. post-operational. The key is no longer in normal use, but off-line access to it is pos-

sible for special purposes.
4. obsolete. The key is no longer available. All records of the key value are deleted.
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System initialization and key installation

Key management systems require an initial keying relationship to provide an initial secure
channel and optionally support the establishment of subsequent working keys (long-term
and short-term) by automated techniques. The initialization process typically involves non-
cryptographic one-time procedures such as transfer of keying material in person, by trusted
courier, or over other trusted channels.

The security of a properly architected system is reduced to the security of keying ma-
terial, and ultimately to the security of initial key installation. For this reason, initial key
installation may involve dual or split control, requiring co-operation of two or more inde-
pendent trustworthy parties (cf. Note §13.8).

13.8 Advanced trusted third party services

This section provides further details on trusted third party services of a more advanced na-
ture, introduced briefly in §13.2.4.

13.8.1 Trusted timestamping service

A trusted timestamping service provides a user with a dated receipt (upon presentation of
a document), which thereafter can be verified by others to confirm the presentation or ex-
istence of the document at the (earlier) date of receipt. Specific applications include estab-
lishing the time of existence of documents such as signed contracts or lab notes related to
patent claims, or to support non-repudiation of digital signatures (§13.8.2).

The basic idea is as follows. A trusted third party T (the timestamp agent) appends a
timestamp t1 to a submitted digital document or data fileD, signs the composite document
(thereby vouching for the time of its existence), and returns the signed document including
t1 to the submitter. Subsequent verification of T ’s signature then establishes, based on trust
in T , the existence of the document at the time t1.

If the data submitted for timestamping is the hash of a document, then the document
content itself need not be disclosed at the time of timestamping. This also provides privacy
protection from eavesdroppers in the case of submissions over an unsecured channel, and
reduces bandwidth and storage costs for large documents.

13.46 Remark (non-cryptographic timestamp service) A similar service may be provided by
non-cryptographic techniques as follows. T stores D along with a timestamp t1, and is
trusted to maintain the integrity of this record by procedural techniques. Later some party
A submits the document again (nowD′), and T comparesD′ to D on file. If these match,
T declares that D′ existed at the time t1 of the retrieved timestamp.

The timestamp agent T is trusted not to disclose its signing key, and also to compe-
tently create proper signatures. An additional desirable feature is prevention of collusion: T
should be unable to successfully collude (with any party) to undetectably back-date a doc-
ument. This may be ensured using Mechanism 13.47, which combines digital signatures
with tree authentication based on hashing.
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13.47 Mechanism Trusted timestamping service based on tree authentication

SUMMARY: party A interacts with a trusted timestamping agent T .
RESULT: A obtains a timestamp on a digital documentD.

1. A submits the hash value h(D) to T . (h is a collision-resistant hash function.)
2. T notes the date and time t1 of receipt, digitally signs the concatenation of h(D) and
t1, and returns t1 and the signature to A. (The signature is called the certified time-
stamp.) A may verify the signature to confirm T ’s competence.

3. At the end of each fixed period (e.g., one day), or more frequently if there is a large
number n of certified timestamps, T :

(i) computes from these an authentication tree T ∗ with root label R (see §13.4.1);
(ii) returns to A the authentication path values to its certified timestamp; and

(iii) makes the root valueR widely available through a means allowing both verifi-
able authenticity and establishment of the time of creation tc of T ∗ (e.g., pub-
lishing in a trusted dated medium such as a newspaper).

4. To allow any other party B to verify (with T ’s verification public key) that D was
submitted at time t1, A produces the certified timestamp. If trust in T itself is chal-
lenged (with respect to backdating t1),A provides the authentication path values from
its certified timestamp to the rootR, whichB may verify (see §13.4.1) against an in-
dependently obtained authentic root value R for the period tc.

To guarantee verifiability,A should itself verify the authentication path upon receiving
the path values in step 3.

13.8.2 Non-repudiation and notarization of digital signatures

The timestamping service of §13.8.1 is a document certification or document notarization
service. A notary service is a more general service capable not only of ascertaining the ex-
istence of a document at a certain time, but of vouching for the truth of more general state-
ments at specified points in time. The terminology originates from the dictionary definition
of a notary public – a public official (usually a solicitor) legally authorized to administer
oaths, and attest and certify certain documents. No specific legal connotation is intended in
the cryptographic use of this term.

The non-repudiation aspect of digital signatures is a primary advantage of public-key
cryptography. By this property, a signer is prevented from signing a document and subse-
quently being able to successfully deny having done so. A non-repudiation service requires
specification of precise details including an adjudication process and adjudicator (judge),
what evidence would be submitted to the adjudicator, and what precise process the adju-
dicator is to follow to render judgement on disputes. The role of an adjudicator is distinct
from that of a timestamp agent or notary which generates evidence.

13.48 Remark (origin authentication vs. non-repudiable signature) A fundamental distinction
exists between a partyA being able to convince itself of the validity of a digital signature s
at a point in time t0, and that party being able to convince others at some time t1 ≥ t0 that s
was valid at time t0. The former resembles data origin authentication as typically provided
by symmetric-key origin authentication mechanisms, and may be accepted by a verifier as a
form of authorization in an environment of mutual trust. This differs from digital signatures
which are non-repudiable in the future.
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Data origin authentication as provided by a digital signature is valid only while the
secrecy of the signer’s private key is maintained. A threat which must be addressed is a
signer who intentionally discloses his private key, and thereafter claims that a previously
valid signature was forged. (A similar problem exists with credit cards and other methods
of authorization.) This threat may be addressed by:

1. preventing direct access to private keys. Preventing users from obtaining direct ac-
cess to their own private keys precludes intentional disclosure. As an example, the
private keys may be stored in tamper-resistant hardware, and by system design never
available outside thereof.

2. use of a trusted timestamp agent. The party obtaining a signature on a critical docu-
ment submits the signature to a timestamp agent, which affixes a timestamp to signa-
ture and then signs the concatenation of these. This establishes a time t1 at which the
critical signature may be ascertained to have existed. If the private signature key cor-
responding to this signature is subsequently compromised, and the compromise oc-
curred after t1, then the critical signature may still be considered valid relative to t1.
For reasons as given in Remark 13.49, use of a notary agent (below) may be prefer-
able.

3. use of a trusted notary agent. The party obtaining a signature on a critical document
(or hash thereof) submits the signature (and document or hash thereof) to an agent
for signature notarization. The agent verifies the signature and notarizes the result
by appending a statement (confirming successful signature verification) to the signa-
ture, as well as a timestamp, and signing the concatenation of the three. A reasonable
period of time (clearance period) may be allowed for declarations of lost private keys,
after which the notary’s record of verification must be accepted (by all parties who
trust the notary and verify its signature) as the truth regarding the validity of the crit-
ical signature at that point in time,5 even should the private key corresponding to the
critical signature subsequently be compromised.

For signed messages having short lifetimes (i.e., whose significance does not extend
far into the future), non-repudiation is less important, and notarization may be unnecessary.
For other messages, the requirement for a party to be able to re-verify signatures at a later
point in time (including during or after signature keys have been updated or revoked), as
well as the adjudication process related to non-repudiation of signatures, places additional
demands on practical key management systems. These may include the storage or archival
of keying material (e.g., keys, certificates, CRLs) possibly required as evidence at a future
point in time.

A related support service is that of maintaining a record (audit trail) of security-related
events including registration, certificate generation, key update, and revocation. Audit trails
may provide sufficient information to allow resolution of disputed signatures by non-auto-
mated procedures.

13.49 Remark (reconstructing past trust) Both signature re-verification (relative to a past point
in time) and resolution of disputes may require reconstruction of chains of trust from a past
point in time. This requires access to keying material and related information for (re)constr-
ucting past chains of trust. Direct reconstruction of such past chains is unnecessary if a
notarizing agent was used. The original verification of the notary establishes existence of a
trust chain at that point in time, and subsequently its record thereof serves as proof of prior
validity. It may be of interest (for audit purposes) to record the details of the original trust
chain.
5More generally, the truth of the appended statement must be accepted, relative to the timestamp.
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13.8.3 Key escrow

The objective of a key escrow encryption system is to provide encryption of user traffic
(e.g., voice or data) such that the session keys used for traffic encryption are available to
properly authorized third parties under special circumstances (“emergency access”). This
grants third parties which have monitored user traffic the capability to decrypt such traf-
fic. Wide-scale public interest in such systems arose when law enforcement agencies pro-
moted their use to facilitate legal wiretapping of telephone calls to combat criminal activi-
ties. However, other uses in industry include recovery of encrypted data following loss of
keying material by a legitimate party, or destruction of keying material due to equipment
failure or malicious activities. One example of a key escrow system is given below, fol-
lowed by more general issues.

(i) The Clipper key escrow system

The Clipper key escrow system involves use of the Clipper chip (or a similar tamper-resist-
ant hardware device – generically referred to below as an escrow chip) in conjunction with
certain administrative procedures and controls. The basic idea is to deposit two key com-
ponents, which jointly determine an encryption key, with two trusted third parties (escrow
agents), which subsequently allow (upon proper authorization) recovery of encrypted user
data.

More specifically, encryption of telecommunications between two users proceeds as
follows. Each party has a telephone combined with a key escrow chip. The users negotiate
or otherwise establish a session keyKS which is input to the escrow chip of the party en-
crypting data (near end). As a function ofKS and an initialization vector (IV), the chip cre-
ates by an undisclosed method a data block called a law enforcement access field (LEAF).
The LEAF and IV are transmitted to the far end during call set-up of a communications ses-
sion. The near end escrow chip then encrypts the user dataD underKS producingEKS (D),
by a U.S. government classified symmetric algorithm named SKIPJACK. The far end es-
crow chip decrypts the traffic only if the transmitted LEAF validates properly. Such veri-
fication requires that this far end chip has access to a common family keyKF (see below)
with the near end chip.

The LEAF (see Figure 13.11) contains a copy of the session key encrypted under a
device-specific key KU . KU is generated and data-filled into the chip at the time of chip
manufacture, but prior to the chip being embedded in a security product. The system meets
its objective by providing third party access under proper authorization (as defined by the
Key Escrow System) to the device keyKU of targeted individuals.

To derive the keyKU embedded in an escrow chip with identifier UID, two key com-
ponents (KC1,KC2) are created whose XOR isKU . Each component is encrypted under a
keyKCK = KN1⊕KN2, whereKNi is input to the chip programming facility by the first
and second trusted key escrow agent, respectively. (Used to program a number of chips,
KNi is stored by the escrow agent for subsequent recovery ofKCK .) One encrypted key
component is then given to each escrow agent, which stores it along with UID to service
later requests. Stored data from both agents must subsequently be obtained by an autho-
rized official to allow recovery ofKU (by recovering firstKCK , and thenKC1,KC2, and
KU = KC1⊕KC2).

Disclosed details of the LEAF are given in Figure 13.11. Each escrow chip contains a
32-bit device unique identifier (UID), an 80-bit device unique key (KU ), and an 80-bit fam-
ily key (KF ) common to a larger collection of devices. The LEAF contains a copy of the
80-bit session key KS encrypted under KU , the UID, and a 16-bit encryption authentica-
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tor (EA) created by an undisclosed method; these are then encrypted underKF . Recovery
of KS from the LEAF thus requires both KF and KU . The encryption authenticator is a
checksum designed to allow detection of LEAF tampering (e.g., by an adversary attempting
to prevent authorized recovery ofKS and therebyD).
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Figure 13.11: Creation and use of LEAF for key escrow data recovery.

(ii) Issues related to key escrow

Key escrow encryption systems may serve a wide variety of applications, and a correspond-
ing range of features exists. Distinguishing properties of escrow systems include:

1. applicability to store-and-forward vs. real-time user communications
2. capability of real-time decryption of user traffic
3. requirement of tamper-resistant hardware or hardware with trusted clock
4. capability of user selection of escrow agents
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5. user input into value of escrowed key
6. varying trust requirements in escrow agents
7. extent of user data uncovered by one escrow access (e.g., limited to one session or

fixed time period) and implications thereof (e.g., hardware replacement necessary).

Threshold systems and shared control systems may be put in place to access escrowed key-
ing information, to limit the chances of unauthorized data recovery. Key escrow systems
may be combined with other life cycle functions including key establishment, and key back-
up and archival (cf. key access servers – Notes 13.5 and 13.6).

13.9 Notes and further references
§13.1

Davies and Price [308] provide a comprehensive treatment of key management, includ-
ing overviews of ISO 8732 [578] and techniques introduced in several 1978 IBM Systems
Journal papers [364, 804]. Early work addressing protection in communications networks
and/or key management includes that of Feistel, Notz, and Smith [388], Branstad [189],
Kent [665], Needham and Schroeder [923], and the surveys of Popek and Kline [998] and
Voydock and Kent [1225]. Security issues in electronic funds transfer (EFT) systems for
point-of-sale (POS) terminals differ from those for remote banking machines due to the
weaker physical security of the former; special key management techniques such as unique
(derived) transaction keys reduce the implications of terminal key compromise – see Beker
and Walker [85], Davies [305], and Davies and Price [308, Ch.10]. See Meyer and Matyas
[859] for general symmetric-key techniques, EFT applications, and PIN management; and
Ford [414] for directory services and standards, including the X.500 Directory and X.509
Authentication Framework [626].

For an overview of key management concepts and life cycles aspects, see Fumy and Lan-
drock [429]. Fumy and Leclerc [430] consider placement of key distribution protocols with-
in the ISO Open Systems Interconnection (OSI) architecture. Regarding key management
principles, see Abadi and Needham [1], and Anderson and Needham [31]. See Vedder
[1220] for security issues and architectures relevant to wireless communications, includ-
ing European digital cellular (Global System for Mobile Communications – GSM) and the
Digital European Cordless Telephone (DECT) system. Regarding key management for se-
curity (authentication and encryption) in North American digital cellular systems, see IS-54
Rev B [365]. ISO 11166-1 [586] (see also comments by Rueppel [1082]) specifies key man-
agement techniques and life cycle principles for use in banking systems, and is used by the
Society for Worldwide Interbank Financial Telecommunications (SWIFT).

§13.2
Various parts of ISO/IEC 11770 [616, 617, 618] contain background material on key man-
agement; Figure 13.3 is derived from an early draft of 11770-3. KDCs and KTCs were
popularized by ANSI X9.17 [37]. Related to tradeoffs, Needham and Schroeder [923]
compare symmetric and public-key techniques; the formalization proposed by Rueppel
[1080] allows analysis of security architectures to distinguish complexity-increasing from
complexity-reducing techniques.

The Kerberos authentication service (§12.3.2) includes a ticket-granting service whereby a
client may re-authenticate itself multiple times using its long-term secret only once. The
client A first acquires a ticket-granting-ticket through a protocol with an Authentication
Server (AS). Thereafter, using a variation of Protocol 12.24, A may obtain authentication
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credentials for a server B from a Ticket-Granting-Server (TGS), extracting a TGS session
key from the time-limited ticket to secure protocol messages with the TGS. A’s long-term
secret (password) need neither be cached for an extended period in memory nor re-entered,
reducing the threat of its compromise; compromise of a TGS session key has time-restricted
impact. See RFC 1510 [1041] for details.

Ford and Wiener [417] describe key access servers (Note 13.6), effectively an access control
mechanism where the resource is a key package. Girault [459] mentions the three levels of
trust of Remark 13.7. Digital envelopes (Note 13.6) are discussed in PKCS #7 [1072].

§13.3
Example 13.9 is from Tuchman [1198]. Davis and Swick [310] discuss symmetric-key cer-
tificates as defined herein under the name private-key certificates (crediting Abadi, Bur-
rows, and Lampson) and propose protocols for their use with trusted third parties, includ-
ing a password-based initial registration protocol. Predating this, Davies and Price [308,
p.259] note that tamper-resistant hardware may replace the trusted third party requirement
of symmetric-key certificates (Note 13.14). A generalization of Protocol 13.12 appears as
Mechanism 11 of ISO/IEC 11770-2 [617], along with related KTC protocols offering ad-
ditional authenticity guarantees (cf. Note 13.13(iii)); these provide KTC variations of the
KDC protocols of §12.3.2).

§13.4
Diffie and Hellman [345] suggested using a trusted public file, maintained by a trusted au-
thority with which each communicant registers once (in person), and from which authentic
public keys of other users can be obtained. To secure requests by one party for the pub-
lic key of another, Rivest, Shamir, and Adleman [1060] and Needham and Schroeder [923]
note the trusted authority may respond via signed messages (essentially providing on-line
certificates).

Authentication trees were first discussed in Merkle’s thesis [851, p.126-131] (see also [852,
853]). For security requirements on hash functions used for tree authentication, see Preneel
[1003, p.38]. Public-key certificates were first proposed in the 1978 B.Sc. thesis of Kohn-
felder [703]; the overall thesis considers implementation and systems issues related to using
RSA in practice. Kohnfelder’s original certificate was an ordered triple containing a party’s
name, public-key information, and an authenticator, with the authenticator a signature over
the value resulting from encrypting the name with the public key/algorithm in question.

X.509 certificates [626] were defined in 1988 and modified in 1993 (yielding Version 2 cer-
tificates); an extensions field was added by a technical corrigendum [627] in 1995 (yielding
Version 3 certificates). Standard extensions for Version 3 certificates appear in an amend-
ment to X.509 [628]; these accommodate information related to key identifiers, key usage,
certificate policy, alternate names (vs. X.500 names) and name attributes, certification path
constraints, and enhancements for certificate revocation including revocation reasons and
CRL partitioning. For details, see Ford [416]. ANSI X9.45 [49] addresses attribute certifi-
cates. The alternative of including hard-coded attribute fields within public-key certificates
is proposed in PKCS #6 [1072]; suggested attributes are listed in PKCS #9 [1072].

In 1984 Shamir [1115] formulated the general idea of asymmetric systems employing user’s
identities in place of public keys (identity-based systems), giving a concrete proposal for
an ID-based signature system, and the model for an ID-based encryption scheme. Fiat and
Shamir [395] combined this idea with that of zero-knowledge interactive proofs, yielding
interactive identification and signature protocols. T. Okamoto [947] (based on a January
1984 paper in Japanese by Okamoto, Shiraishi, and Kawaoka [954]) independently pro-
posed a specific entity-authentication scheme wherein a trusted center T distributes to a
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claimant A a secret accreditation value computed as a function of T ’s private key and A’s
identity (or unique index value). The identity-based key-agreement scheme of Maurer and
Yacobi [824] (cf. §12.6 notes on page 538) is an exception to Remark 13.27: extra public
dataDA is avoided, as ideally desired.

Günther [530] proposed a protocol for key agreement (Protocol 12.62) wherein users’ pri-
vate keys are constructed by a trusted authorityT based on their identities, with correspond-
ing Diffie-Hellman public keys reconstructed from public data provided by T (herein called
implicitly-certified public keys, identity-based subclass). The protocol introduced by Gi-
rault [459], based on the key agreement protocol of Paillès and Girault [962] (itself up-
dated by Girault and Paillès [461] and Girault [458]) similar to a protocol of Tanaka and
E. Okamoto [1184], involved what he christened self-certified public keys (herein called
implicitly-certified public keys, self-certified subclass); see Mechanism 12.61.

Related to self-certified public keys, Brands [185] has proposed secret-key certificates for
use in so-called restrictive blind signature schemes. These involve a data triple consisting
of a private key, matching public key, and an explicit (secret-key) certificate created by a
trusted third party to certify the public key. Users can themselves create pairs of public keys
and matching (secret-key) certificates, but cannot create valid triples. As with self-certified
keys, performance of a cryptographic action relative to the public key (e.g., signing) im-
plicitly demonstrates that the performing party knows the private key and hence that the
corresponding public key was indeed issued by the trusted third party.

§13.5
Key tags are due to Jones [642]. Key separation as in Example 13.33 is based on Ehrsam
et al. [364], which outlines the use of master keys, key variants, key- and data-encrypting
keys. Smid [1153] introduced key notarization in the Key Notarization System (KNS), a
key management system designed by the U.S. National Bureau of Standards (now NIST),
and based on a Key Notarization Facility (KNF) – a KTC-like system component trusted
to handle master keys, and to generate and notarize symmetric keys. Key notarization with
key offsetting (Example 13.34) is from ISO 8732 [578], which is derived from ANSI X9.17
[37].

The generalization of key notarization to control vectors is due to Matyas, Meyer, and
Brachtl [806], and described by Matyas [803] (also [802]), including an efficient method
for allowing arbitrary length control vectors that does not penalize short vectors. The IBM
proposal specifies E as two-key triple-DES, as per ANSI X9.17. Matyas notes that a sec-
ond approach to implement control vectors, using a MAC computed on the control vector
and the key (albeit requiring additional processing), has the property that both the control
vector and the recovered key may be authenticated before the key is used. The notion of a
capability (Note 13.35) was introduced in 1966 by Dennis and Van Horn [332], who also
considered the access matrix model.

§13.6
Key distribution between domains is discussed in ISO/IEC 11770-1 [616]; see also Kohl
and Neuman [1041] with respect to Kerberos V5, and Davis and Swick [310]. A Kerberos
domain is called a realm; authentication of clients in one realm to servers in others is sup-
ported in V5 by inter-realm keys, with a concept of authentication paths analogous to public-
key certification paths.

Kent [666] overviews the design and implementation of Privacy Enhanced Mail (PEM) (see
RFC 1421-1424 [1036, 1037, 1038, 1039]), a prototyped method for adding security to In-
ternet mail. Encryption and signature capabilities are provided. The PEM infrastructure of
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RFC 1422 is based on a strict hierarchy of certification authorities, and includes specifica-
tion of Policy Certification Authorities (PCAs) which define policies with respect to which
certificates are issued. Regarding certification paths, see Tarah and Huitema [1185].

The 1988 version of X.509 [626] defines forward and reverse certificates, certificate chains,
and cross-certificate pairs, allowing support for the general digraph trust model. The formal
analysis of Gaarder and Snekkenes [433] highlights a practical difficulty in verifying the
validity of certificates – the requirement of trusted timeclocks. For reports on implementa-
tions based on X.509 certificates, see Tardo and Alagappan [1186] and others [660, 72, 839].
Techniques for segmenting CRLs (Note 13.44) are included in the above-cited work on Ver-
sion 3 certificate extensions [628]. Kohnfelder [703] noted many of the issues regarding
certificate revocation in 1978 when use of certificates was first proposed, and suggested
techniques to address revocation including manual notification, maintaining a public file
identifying revoked keys, and use of certificate expiration dates (cf. Denning [326, p.170]).

§13.7
Matyas and Meyer [804] consider several life cycle aspects. ISO 11770-1 [616] provides
a general overview of key management issues including key life cycle. ANSI X9.57 [52]
provides broad discussion on certificate management, including trust models, registration,
certificate chains, and life cycle aspects. ISO 10202-7 [584] specifies a key management
life cycle for chipcards.

§13.8
Davies and Price [308] discuss practical issues related to registries of public keys, non-
repudiation, and revocation, including the use of timestamps and notarization; see also the
original works of Kohnfelder [703] and Merkle [851], which include discussion of notaries.
Haber and Stornetta [535] propose two additional techniques for timestamping digital data
(one enhanced by Bayer, Haber, and Stornetta [79]), although tree authentication, due to
Merkle [852], appears to be preferable in practice. Benaloh and de Mare [111] introduce
one-way accumulators to address the same problem.

Although key backup/archive functionality existed in earlier commercial products, the
widespread study of key escrow systems began circa 1992, and combines issues related to
secret sharing, key establishment, and key life cycle. For practical aspects including com-
mercial key recovery and backup, see Walker et al. [1229] and Maher [780]. Denning and
Branstad [329] provide an excellent overview of the numerous proposals to date, including
a taxonomy. Among such proposals and results are those of Micali [863] (see also [862]),
Leighton and Micali [745], Beth et al. [125], Desmedt [338] (but see also Knudsen and
Pedersen [690]), Jefferies, Mitchell, and Walker [635], Lenstra, Winkler, and Yacobi [755],
Kilian and Leighton [671], Frankel and Yung [420], and Micali and Sidney [869]. In some
systems, it is required that escrow agents be able to verify that (partial) keys received are
authentic, raising issues of verifiable secret sharing (see Chor et al. [259]).

The Clipper chip is a tamper-resistant hardware encryption device compliant with FIPS 185
[405], a voluntary U.S. government standard intended for sensitive but unclassified phone
(voice and data) communications. FIPS 185 specifies use of the SKIPJACK encryption al-
gorithm (80-bit key, 64-bit blocks) and LEAF creation method, the details of both of which
remain classified. The two initial key escrow agents named by the U.S. Government are the
National Institute of Standards and Technology (NIST) and the Department of the Treasury,
Automated Systems Division. Denning and Smid [331] describe the operation of an initial
key escrow system employing a chip in accordance with FIPS 185. The Capstone chip, a
more advanced device than Clipper, implements in addition a public key agreement algo-
rithm, DSA, SHA, high-speed general-purpose exponentiation, and a (pure noise source)
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random number generator; it is used in the U.S. government Multilevel Information Se-
curity System Initiative (MISSI) for secure electronic mail and other applications. Blaze
[152] demonstrated that a protocol attack is possible on Clipper, requiring at most 216 trial
LEAF values to construct a bogus LEAF with a valid EA; Denning and Smid note this is
not a threat in practical systems. For a debate on issues related to U.S. digital telephony leg-
islation passed in October 1994 as the Communications Assistance for Law Enforcement
Act (CALEA), requiring telephone companies to provide technical assistance facilitating
authorized wiretapping, see Denning [328].
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